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vernier. For the same reason, activity corresponding to four isolated
(that is, unbound) contextual elements (Fig. 2a) might not be
decreased by neighbouring contextual elements and, thus, might
produce high neural activity inhibiting the vernier target. For the
extended standard grating, shine through is possible because little
neural activity occurs in the vernier's close neighbourhood. Analo-
gously, extended contextual gratings might not interfere with the
vernier because activity corresponding to their inner elements is
weak. Therefore, context±context inhibition prevents context±
target suppression of the vernier target.

Contextual elements might directly in¯uence the ®ring pattern of
cortical neurons that code the vernier. For example, the activity of a
neuron that is responding vigorously to a vernier target should
diminish when isolated contextual elements are presented together
with the standard grating. By contrast, increasing the number of
contextual elements should yield a rebound of activity. Because
vernier display times are short, we expect strongest modulation
effects in the transient response of the neuronsÐthat is, in the
activity immediately after the presentation of the target. M
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Embryonal tumours of the central nervous system (CNS) repre-
sent a heterogeneous group of tumours about which little is
known biologically, and whose diagnosis, on the basis of mor-
phologic appearance alone, is controversial. Medulloblastomas,
for example, are the most common malignant brain tumour of
childhood, but their pathogenesis is unknown, their relationship
to other embryonal CNS tumours is debated1,2, and patients'
response to therapy is dif®cult to predict3. We approached these
problems by developing a classi®cation system based on DNA
microarray gene expression data derived from 99 patient samples.
Here we demonstrate that medulloblastomas are molecularly
distinct from other brain tumours including primitive neuro-
ectodermal tumours (PNETs), atypical teratoid/rhabdoid tumours
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MD  Mglio Rhab    Ncer PNET
M93119 INSM1 insulinoma-associated 1
M30448 Casein kinase II beta subunit 
S82240 RhoE
D80004 KIAA0182 gene
D76435 ZIC protein
X83543 APXL apical protein
X62534 HMG2 high-mobility group
M96739 NSCL1 
U26726 11 beta-hydroxysteroid dehydrogenase type II
HG311-HT311 Ribosomal protein L30
X86693 High endothelial venule
M93426 PTPRZ protein tyrosine phosphatase
U48705 DDR gene
X86809 Major astrocytic phosphoprotein PEA15
U45955 Neuronal membrane glycoprotein M6b
U53204 Plectin (PLEC1) 
X13916 LDL-receptor related protein
D87258 Serin protease with IGF-binding motif
Z31560 SOX2 SRY (sex-determining region Y)-box 2
M3288 6SRI sorcin
J04164 RPS3 ribosomal protein S3
M12125 Skeletal beta-tropomyosin
D29958 KIAA0116 gene
D17400 PTS 6-pyruvoyltetrahydropterin synthase
D83174 CBP1 collagen-binding protein 1
D83735 Adult heart mRNA for neutral calponin
D84454 UDP-galactose translocator
L38969 Thrombospondin 3 (THBS3) 
U12465 RPS11 ribosomal protein S11 
D80005 KIAA0183 gene
D87463 KIAA0273 gene
U90902 Clone 23612 mRNA sequence
D26070 Type 1 inositol 1,4,5-trisphosphate receptor
X63578 Parvalbumin
Z15108 PRKCZ protein kinase C, zeta
L35592 Germline mRNA sequence
L10338 SCN1B sodium channel
L33243 PKD1 polycystic kidney disease protein 1
L77864 Stat-like protein (Fe65) 
J04469 Mitochondrial creatine kinase (CKMT)
M80397 POLD1 polymerase (DNA directed), delta 1
X14830 CHRNB1 cholinergic receptor, nicotinic, beta polypeptide 1
U97018 Echinoderm microtubule-associated protein homologue HuEMAP
HG4178-HT4448 Af-17
K02882 IGHD gene 
X52228 MUC1 mucin 1, transmembrane
U22314 Neural-restrictive silencer factor
D29675 Inducible nitric oxide synthase gene
S82471 SSX3
M54951 Human atrial natriuretic factor gene
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Figure 1 Classi®cation of embryonal brain tumours by gene expression. A, Representative

photomicrographs of embryonal and non-embryonal tumours. a, Classic medulloblas-

toma; b, desmoplastic medulloblastoma; c, supratentorial primitive neuroectodermal

tumour (PNET); d, atypical teratoid/rhabdoid tumour (AT/RT; arrow indicates rhabdoid cell

morphology); and e, glioblastoma with pseudopalisading necrosis (n). Magni®cation at

400´. B, Principal component analysis (PCA) of tumour samples using all genes

exhibiting variation across the data set. The axes represent the three linear combinations

of genes that account for most of the variance in the original data set (see Supplementary

Information I and III). MD, medulloblastoma; Mglio, malignant glioma; Ncer, normal

cerebella. C, PCA using 50 genes selected by signal-to-noise metric to be most highly

associated with each tumour type (the top 10 for each tumour are listed in E).

D, Clustering of tumour samples by hierarchical clustering using all genes exhibiting

variation across the data set. E, Signal-to-noise rankings of genes comparing each

tumour type to all other types combined (see Supplementary Information I). For each gene,

red indicates a high level of expression relative to the mean; blue indicates a low level of

expression relative to the mean. Rhab, rhabdoid. The standard deviation (s) from the

mean is indicated.
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Classic  Desmoplastic
HG1980-HT2023 Tubulin, beta 2
U63842 NeuroD3 gene
X67951 PAGA proliferation-associated gene A
X64330 ATP-citrate lyase
J03241 TGFB3 transforming growth factor, beta 3
U44839 Putative ubiquitin C-terminal hydrolase (UHX1)
Z27113 H. sapiens gene for RNA polymerase II subunit
X12447 ALDOA aldolase A
U73328 DLX7 distal-less homeobox 7
U59913 SMAD5
Z75190 Apolipoprotein E receptor 2
X15183 Human mRNA for 90K heat-shock protein
U61263 Acetolactate synthase homologue
L07515 Human heterochromatin protein homologue (HP1)
M34677 Human nested gene protein gene (coag. factorVIII)
U40391 Serotonin N-acetyltransferase gene
D16611 CPO coproporphyrinogen oxidase
L37127 RNA polymerase II
U33839 No description available
X81817 BAP31
X51804 Human PMI gene for a putative receptor protein
Y09305 Protein kinase, Dyrk4
X14885 Transforming growth factor-beta 3 (TGF-beta 3)
X57398 NME1 non-metastatic cells 1 (NM23A)
X02152 LDHA lactate dehydrogenase A
X64364 BSG basigin
U04806 FLT3/FLK2 ligand mRNA
U52191 SMCY (H-Y) mRNA
M35296 Tyrosine kinase arg gene
D50840 Ceramide glucosyltransferase
S69189 Peroxisomal acyl-coenzyme A oxidase
L03785 MYL5 myosin, light polypeptide 5
M82919 GABRB3 gamma-aminobutyric acid A receptor, beta 3
U65092 Melanocyte-specific gene 1 (MSG1)
S49592 Transcription factor E2F-like protein
D79994 KIAA0172 gene
X95586 PSMB5 proteasome subunit, beta type, 5
U79299 Human neuronal olfactomedin-related ER localized protein
X71973 GPX4 phospholipid hydroperoxide glutathione peroxidase
U31342 Human nucleobindin gene
U48437 Amyloid precursor-like protein 1
D86957 KIAA0202 gene
HG2279-HT2375 Triosephosphate isomerase
Z19585 THBS4 thrombospondin 4
M16405 Human m4 muscarinic acetylcholine receptor gene
U32315 Syntaxin 3
U11701 LIM-homeobox domain protein (hLH-2)
Y11251 Novel member of serine-arginine domain protein, SRrp129
U68018 Mad protein homologue (hMAD-2)
M81181 ATP1B2 ATPase, Na+/K+ transporting, beta 2 polypeptide
U58334 Bcl2, p53 binding protein BBP/53BP2
L38490 ARF4L ADP-ribosylation factor 4-like
M31328 GNB3 guanine nucleotide binding protein
M60626 FPR1 formyl peptide receptor 1
M97815 CRABP2 cellular retinoic acid-binding protein 2
J00116 COL2A1 collagen, type II, alpha 1
U01824 Glutamate transporter
Y00282 RPN2 ribophorin II
M65254 PPP2R1B protein phosphatase 2
X64877 HFL1 H factor (complement)-like 1
D31885 KIAA0069 gene
D87434 KIAA0247 gene
Z35093 SURF1 surfeit 1
Y08374 GP-39 cartilage protein gene
Z54367 Plectin
Z46632 PDE4C phosphodiesterase 4C
HG3517-HT3711 Alpha-1-antitrypsin
L42354 Clone 48ES4 mRNA fragment
X15376 GABRG2 gamma-aminobutyric acid A receptor, gamma 2
X89059 Unknown protein expressed in macrophages

HG3543-HT3739 Insulin-like growth factor 2
X53331 MGP matrix protein Gla
X65724 NDP norrie disease protein
D14530 40S ribosomal protein S23
Y00757 SGNE1 secretory granule, neuroendocrine protein 1
U25789 Ribosomal protein L21
L27560 Insulin-like growth factor binding protein 5 (IGFBP5)
X83543 APXL apical protein (Xenopus laevis-like)
X52966 RPL35A ribosomal protein L35a
L06797 Human (clone L5) orphan G protein-coupled receptor
M14745 BCL2 B
HG3431-HT3616 Decorin
D79205 Ribosomal protein L39
D82345 NB thymosin beta
D38549 KIAA0068 gene
U14972 Ribosomal protein S10
X59841 PBX3
J03242 IGF2 insulin-like growth factor 2 (somatomedin A)
HG3214-HT3391 Metallopanstimulin 1
X06617 RPS11 ribosomal protein S11
J02611 APOD apolipoprotein D
X16064 Human mRNA for translationally controlled tumour protein
Z74616 COL1A2 collagen, type I, alpha-2
L40386 DP2 (Humdp2)
X04741 Human mRNA for protein gene product (PGP)
M55210 LAMC1 laminin, gamma 1
M96739 NSCL1
U73304 CB1 cannabinoid receptor (CNR1) gene
M65292 HFL1 H factor (complement)-like 1
HG311-HT311 Ribosomal protein L30
M83233 TCF12 transcription factor 12
U07919 ALDH6 aldehyde dehydrogenase 6
X57959 RPL17 ribosomal protein L7
J04080 C1S complement component 1, s subcomponent
X76029 Neuromedin U
U14973 40S ribosomal protein S29
U24576 Breast tumour autoantigen
L41066 NFAT3
X60489 Elongation factor-1-beta
M62843 Paraneoplastic encephalomyelitis antigen HUD
HG662-HT662 Epstein–Barr virus small RNA-associated protein
HG613-HT613 Ribosomal protein S12
L42379 Quiescin (Q6) mRNA
M13241 N-MYC
U12404 HSPB1 heat shock 27K protein 1
M55998 Alpha-1 collagen type I gene
S82240 RhoE
U78027 L44L gene
X06700 COL3A1 alpha-1 type 3 collagen
D13413 Tumour-associated 120K nuclear protein p120
M74719 SEF2-1A protein (SEF2-1A)
M93119 INSM1 insulinoma-associated 1
M92287 CCND3 cyclin D3
HG33-HT33 Ribosomal protein S4
U16306 CSPG2 chondroitin sulphate proteoglycan 2
Z37976 LTBP2 latent transforming growth factor beta binding protein 2
X69150 Ribosomal protein S18
HG4542-HT4947 Ribosomal protein L10
L41607 GCNT2 glucosaminyl (N-acetyl) transferase 2
U43148 PTCH Patched homologue
M30269 NID nidogen (enactin)
X07384 GLI glioma-associated oncogene homologue
L38941 RPL37 ribosomal protein L37
U09953 RPL9 ribosomal protein L9
D87464 KIAA0274 gene
M18000 40S ribosomal protein S17
M91196 ICSBP1 interferon consensus sequence binding protein 1
L27559 IGFBP5 insulin-like growth factor binding protein 5
S76475 NTRK3 neurotrophic tyrosine kinase, receptor, type 3 (TrkC)
L41067 Transcription factor NFATx
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Figure 2 Differential expression of genes in classic versus desmoplastic medullo-

blastomas. Genes were ranked by the signal-to-noise metric according to their correlation

with the classic versus desmoplastic distinction. Genes shown are those more highly

correlated with the distinction than 99% of permutations of the class labels (P , 0.01; see

Supplementary Information III). GenBank accession numbers and gene descriptions are

shown. Genes regulated by SHH are shown at the right. Normalized level of expression of

selected SHH-regulated genes is shown at right. Each bar represents a different tumour.
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(AT/RTs) and malignant gliomas. Previously unrecognized
evidence supporting the derivation of medulloblastomas from
cerebellar granule cells through activation of the Sonic Hedgehog
(SHH) pathway was also revealed. We show further that the
clinical outcome of children with medulloblastomas is highly
predictable on the basis of the gene expression pro®les of their
tumours at diagnosis.

We ®rst addressed the problem of distinguishing different embry-
onal CNS tumours from each other. This is important as the
classi®cation of these tumours based on histopathological appear-
ance is debated (Fig. 1A). There are two hypotheses regarding the
classi®cation of medulloblastomas: the ®rst is that they are part of a
larger class of PNETs arising from a common cell type in the
subventricular germinal matrix1, the second is that they arise from
cerebellar granule cell progenitors2. To begin to generate a molecular
taxonomy of CNS embryonal tumours, we analysed the gene
expression pro®les of 42 patient samples (data set A: 10 medullo-
blastomas, 5 CNS AT/RTs, 5 renal and extrarenal rhabdoid tumours,
and 8 supratentorial PNETs, as well as 10 non-embryonal brain
tumours (malignant glioma) and 4 normal human cerebella). RNA
extracted from frozen specimens was analysed with oligonucleotide
microarrays containing probes for 6,817 genes. The gene expression
data are available as Supplementary Information II (see also http://
www.genome.wi.mit.edu/MPR/CNS).

To determine whether the different types of tumours could be
molecularly distinguished, we used a method of data reduction
called principal component analysis in which the high dimension-
ality of the data was reduced to three viewable dimensions repre-
senting linear combinations of variables (genes) that account for
most of the variance in the original data set (Fig. 1B)4. Normal brain
was easily separable from the brain tumours, and the different
tumour types were similarly separable. Separation of tumour types
was also seen using hierarchical clustering (Fig. 1D)5. A more
appropriate strategy for distinguishing known tumour types, how-
ever, is to use supervised learning methods to identify the genes
most highly correlated with the tumour type distinctions (Fig. 1C,
E). Analysis of 1,000 random permutations of the data failed to yield
a separation of tumour classes to the extent observed in Fig. 1C,
indicating that the observed gene expression patterns could not be
explained by chance (Supplementary Information III). The robust-
ness of these markers for classi®cation was further investigated
using a weighted-voting algorithm and evaluated by cross validation
testing6. Correct classi®cation of the tumours could be achieved
with accuracy (35 out of 42 correct classi®cations, P , 10-10

compared with random classi®cation; see Supplementary Informa-
tion III).

As expected, malignant gliomas were clearly separable from
medulloblastomas, re¯ecting the derivation of gliomas from cells
of non-neuronal origin. Consistent with this, the gliomas expressed

genes typical of the astrocytic and oligodendrocytic lineage (PEA15,
SOX2, PMP2, Olig-2, TrkB kinase-negative splice variant, S100,
GFAP), genes related to metabolism (fructose 2,6-bisphosphatase,
glutamate dehydrogenase), and genes involved in cell differentiation
(ID2, GDF1, TYK2; Fig. 1E and Supplementary Information III).
The medulloblastomas form a cluster that is also separate from the
PNETs (Fig. 1C), supporting the hypothesis that these two classes of
embryonal tumours are molecularly distinct. Among the genes most
highly correlated with the medulloblastoma class were ZIC and
NSCL1, encoding transcription factors that are speci®c for cere-
bellar granule cells (Fig. 1E)7,8. This result suggests that medullo-
blastomas, but not PNETs, arise from cerebellar granule cells, or
alternatively, have activated the transcriptional programme of
cerebellar granule cells.

We next analysed the AT/RT tumours, which have only recently
been distinguished from medulloblastoma9. Accurate identi®cation
of AT/RT is particularly important because patients with these
tumours have an extremely poor prognosis. AT/RT tumours arise
in the CNS or in other organs such as the kidney, where they are
referred to as rhabdoid tumours. Most tumours harbour hSNF5/
INI1 mutations, but it is unknown whether AT/RTs arising in
different anatomical locations are molecularly distinct9±11. As
shown in Fig. 1C, the AT/RTs and rhabdoid tumours were easily
distinguishable from the other tumour types in the study. Of note,
the CNS AT/RTs and abdominal rhabdoid tumours were molecu-
larly similar despite having arisen in different anatomical locations.
This ®nding supports the idea that they arise from a similar cell of
origin. Alternatively, a common mechanism of transformation may
yield similar transcriptional programmes in cells of distinct origin.
Markers of the distinction between AT/RT and rhabdoid tumours
include genes speci®cally expressed during myogenesis, including
skeletal b-tropomyosin, neutral calponin, NFAT3, and myosin
regulatory light chain (Fig. 1E and Supplementary Information
III). This ®nding is consistent with the hypothesis that the tumours
have a mesenchymal origin.

We next focused on molecular heterogeneity within a single
tumour type, medulloblastoma. The principal histological subclass
of medulloblastoma is desmoplastic medulloblastoma, although its
diagnosis is highly subjective (Fig. 1A). Desmoplastic medulloblas-
toma is of interest because it is seen with high frequency in patients
with Gorlin's syndrome, a rare autosomal dominant disorder
resulting from mutation of the SHH receptor PTCH12,13. It is unclear
whether dysregulation of the SHH pathway, known to be mitogenic
for cerebellar granule cells, is also involved in the pathogenesis of
sporadic desmoplastic medulloblastoma14±18.

To determine whether desmoplastic and classic medulloblastoma
are distinguishable by gene expression, we analysed 34 medullo-
blastoma samples (data set B) whose histology was scored using
World Health Organization (WHO) criteria19. As shown in Fig. 2, a
sharp and statistically signi®cant gene expression signature of
desmoplastic histology was evident, and this signature was suf®cient
for correct classi®cation of 33 out of 34 tumours (P = 8.6 ´ 10-7
compared with random classi®cation; see Supplementary Informa-
tion III). Notably, among the genes most highly correlated with
desmoplastic medulloblastoma was PTCH (itself a transcriptional
target of SHH), as well as two other SHH downstream targets: GLI20

and N-MYC (A. Kenney and D. Rowitch, personal communication).
Furthermore, insulin-like growth factor II expression was correlated
with desmoplastic histology, and its expression is essential for SHH-
mediated tumorigenesis in mice21. Taken together, the transcrip-
tional pro®ling indicates that sporadic desmoplastic medulloblas-
tomas, like tumours associated with Gorlin's syndrome, are
characterized by activation of the SHH signalling pathway, further
supporting the proposal that SHH dysregulation may be important
in the pathogenesis of medulloblastoma.

A clinical challenge concerning medulloblastoma is the highly
variable response of patients to therapy. Whereas some patients are

Figure 3 Representative electron micrographs showing medulloblastomas with low

ribosome (a) and high ribosome (b) content. Each panel shows a portion of a single cell

with a portion of the nucleus (n) (arrows designate ribosomes). Scale bars, 0.5 mm.
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D78586 Human CAD mRNA for multifunctional protein CAD
M32886 SRI sorcin
U31556 E2F5 E2F transcription factor 5, p130-binding
X94910 ERp31 protein
Y10313 Nerve growth factor-inducible PC4 homologue
S78187 M-phase inducer phosphatase 2
HG2479-HT2575 Helix-loop-helix protein Sef2-1d
U12595 Tumour necrosis factor type 1 receptor associated protein (TRAP1)
L36720 Bystin
HG3214-HT3391 Metallopanstimulin 1
HG4542-HT4947 Ribosomal protein L10
D29805 GGTB2 glycoprotein-4-beta-galactosyltransferase 2
X52966 RPL35A ribosomal protein L35a
M64716 RPS25 ribosomal protein S25
M64347 FGFR3 fibroblast growth factor receptor 3
U09770 Cysteine-rich heart protein (hCRHP)
D28473 IARS isoleucine-tRNA synthetase
X69908 P2 gene for c subunit of mitochondrial ATP synthase gene
U76638 BRCA1-associated RING domain protein (BARD1)
X79234 Ribosomal protein L11
X15376 GABRG2 gamma-aminobutyric acid A receptor, gamma 2
M14199 LAMR1 laminin receptor (2H5 epitope)

U28963 Gps2 (GPS2)
X69636 H. sapiens mRNA sequence (15q11-13)
U18018 ETV4 Ets variant gene 4 (E1A enhancer-binding protein, E1AF)
M97287 SATB1 special (A+T)-rich sequence binding protein 1
U78180 Sodium channel 2 (hBNaC2) mRNA, alternatively spliced
S76475 NTRK3 neurotrophic tyrosine kinase, receptor, type 3 (TrkC)
D28124 Unknown product
U70867 Prostaglandin transporter hPGT
M17733 Thymosin beta-4
L10333 Neuroendocrine-specific protein A (NSP)
D14686 AMT glycine cleavage system protein T (aminomethyltransferase)
S66541 B-50 neural phosphoprotein
AC0020 A-589H1.2 from  H. sapiens chromosome 16 BAC clone CIT987-SKA-589H1
M96739 NSCL1
D86963 PTB ribosomal protein L26
U40271 PTK7 protein-tyrosine kinase 7
L09229 FACL1 long chain fatty acid acyl-coA ligase
D78012 CRMP1 collapsin response mediator protein 1
M74715 IDUA iduronidase, alpha-L-
HG2525-HT2621 Helix-loop-helix protein delta max, alt. splice 1
L32164 Zinc finger protein
L04731 Translocation T(4:11) of ALL-1 gene to chromosome 4
M22919 MLC gene (non-muscle myosin light chain)
X15882 COL6A2 collagen, type VI, alpha 2
U20657 Ubiquitin protease (Unph) proto-oncogene
L17327 Pre-T/NK cell associated protein (3B3)
J05412 REG1A regenerating islet-derived 1 alpha (pancreatic stone protein)
D43682 Very-long-chain acyl-CoA dehydrogenase (VLCAD)
X58521 Nuclear pore glycoprotein P62
M21142 Guanine nucleotide-binding protein G-s-alpha-3 gene
X52896 RNA for dermal fibroblast elastin
D50663 CW-1
U35139 NECDIN related protein
U16660 Peroxisomal enoyl-CoA hydratase-like protein (HPXEL)
U04241 Homologue of Drosophila enhancer of split m9/m10
Y07847 RRP22 protein
U78521 Immunophilin homologue ARA9
X93511 Telomeric repeat binding factor (TRF1)
D30715 Exon2a from human PAP (pancreatitis-associated protein) gene
U51920 SRP54 signal recognition particle 54K protein
U02619 TFIIIC box B-binding subunit
U14417 Ral guanine nucleotide dissociation stimulator
M73547 Human polyposis locus (DP1 gene)
U09820 Helicase II (RAD54L)
X13461 Calmodulin-related protein NB-1
Z56281 Interferon regulatory factor 3

K03189 Chorionic gonadotropin (HCG) beta subunit
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Markers of treatment failure
X69150 Ribosomal protein S18

U14972 Ribosomal protein S10

M36072 RPL7A ribosomal protein L7a
X13293 MYBL2 V-mmyb avian myeloblastosis viral oncogene homologue-like 2

L06419 PLOD lysyl hydroxylase
J02611 APOD apolipoprotein D
D86974 KIAA0220 gene
U37673 Beta-NAP

Markers of survival

a

b

Figure 4 Predicting medulloblastoma outcome by gene expression pro®ling. a, Kaplan±

Meier overall survival curves for patients predicted to survive and patients predicted to be

treatment failures using an 8-gene k-NN model. Vertical hash marks indicate time of

censorship. b, Fifty genes most highly associated with favourable outcome (top panel) or

with treatment failure (bottom panel) according to the signal-to-noise metric. Samples are

further sorted according to their membership in the two unsupervised SOM-derived

clusters (C0, C1). Class C1 tumours are notable for their high ribosomal content. The 8

genes most frequently used by the k-NN outcome predictor are indicated in bold. The

colour scheme is the same as Fig. 1E.
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cured by chemotherapy and radiation, others have progressive
disease3. Currently, the only prognostic factor used in clinical practice
is tumour staging; a re¯ection of postoperative tumour size and the
presence of metastases. Unfortunately, staging-based prognostication
is imperfect in that many patients with low-stage disease still
succumb to their disease. There are currently no molecular markers
of outcome used in clinical practice for any brain tumour. High
levels of expression of the neurotrophin-3 receptor (TRKC), how-
ever, have been reported to correlate with a favourable medullo-
blastoma outcome22,23, suggesting a molecular basis for the
variability of medulloblastoma outcome. Molecular correlates of
medulloblastoma metastasis have also been recently reported24.

To explore the heterogeneity in response to treatment of medullo-
blastomas, we expanded our analysis to include 60 similarly treated
patients from whom biopsies were obtained before receiving treat-
ment, and for whom clinical follow-up was available (data set C).
We ®rst investigated whether clustering methods would identify
biologically distinct subsets of the tumours. The tumours were
clustered into two groups using self-organizing maps (SOM); an
unsupervised algorithm that groups samples into a predetermined
number of clusters on the basis of their gene expression patterns6,25.
The genes most highly correlated with the SOM clusters were
primarily ribosomal protein-encoding genes (Supplementary Infor-
mation III), suggesting differences in ribosome biogenesis. Blinded
electron microscopic examination of 9 samples by 3 observers
con®rmed that tumours falling into the cluster characterized by
high expression of ribosomal protein genes contained higher
numbers of ribosomes (P = 0.03, Fisher's exact test; Fig. 3). We
next investigated whether the SOM-derived clusters were correlated
with patient survival. No statistically signi®cant difference in the
proportion of survivors compared with treatment failures in each
cluster was observed (Fisher's exact test, P = 0.1; see Supplementary
Information III). Because unsupervised methods are generally not
the most appropriate analytical approach to predicting known
distinctions such as outcome, we developed a supervised learning
outcome predictor based on gene expression in which the classi®er
`learns' the distinction between patients who are alive after treat-
ment (`survivors') compared with those who succumbed to their
disease (`failures', minimum follow-up of 24 months for surviving
patients, overall median 41.5 months).

We used a k-nearest neighbours (k-NN) algorithm26 that com-
putes the distance of a test sample to each of the training set samples,
each of which has an associated class (in this case, survivor or
failure), and then predicts the class of the test sample to be that of
the majority of the k-closest samples. The k-NN classi®er was
evaluated by cross-validation, whereby one sample is randomly
withheld, a model is trained on the remaining samples, and the
model is then used to predict the class of the withheld sample. The
process is repeated until all of the samples are tested.

Outcome predictions based on gene expression were statistically
signi®cant for k-NN models ranging from 2 to 21 genes, with
optimal predictions made by an 8-gene model that made only 13/60
classi®cation errors (Fisher's exact test, P = 0.0002). Shown most
clearly by a Kaplan±Meier survival analysis in Fig. 4a, patients that
were predicted to be survivors had a 5 year overall survival of 80%
compared with 17% for patients predicted to have a poor outcome
(P = 0.000003, log rank test). A more conservative method of
assessing statistical signi®cance is to attempt to optimize classi®ers
of random permutations of the survivor/failure class labels. We
performed 1,000 such permutations and found only 9 for which
prediction accuracy matched or exceeded our observed result
(Supplementary Information III), indicating that the result is
unlikely to be achieved by chance (P = 0.009). We subsequently
tested several other classi®cation algorithms including weighted
voting6,27, support vector machines28,29 and IBM SPLASH30, all of
which performed with similarly high accuracy (Supplementary
Information I and III).

We explored further the clinical value of the predictor by con-
sidering existing prognostic factors for medulloblastoma outcome.
Patients with localized disease (M0) had a more favourable outcome
compared with patients with involvement of the cerebrospinal ¯uid
or with distant metastases (M+) (P = 0.03 comparing M0 with
M+ by Kaplan±Meier analysis), although not all M0 patients
survived. When our outcome predictor was applied only to the
42 M0 patients, the prediction of outcome remained signi®cant
(P = 0.002), indicating that the expression-based predictor sub-
stantially improved staging-based prognostication. Similarly, pre-
diction based on TRKC expression was imperfect in this series in
that not all patients in the unfavourable (TRKC-low) category died.
When our gene expression-based predictor was applied to the 33
TRKC-low patients, the surviving patients could be signi®cantly
separated from those who succumbed to their disease (P = 0.01,
Supplementary Information III). Of note, not all patients in this
study received identical therapy. However, restricting our analysis to
the 35 patients that received surgery, vincristine, cisplatin and
cyclophosphamide, the predictor continued to yield a signi®cant
Kaplan±Meier survival distinction (P = 0.0012). Taken together,
these results demonstrate that the outcome predictor based on gene
expression exceeds other approaches to prognosis determination.

A number of genes not previously associated with clinical out-
come were identi®ed (Fig. 4b). Those correlated with favourable
outcome included many genes characteristic of cerebellar differ-
entiation (vesicle coat protein b-NAP, NSCL1, TRKC, sodium
channels), and genes encoding extracellular matrix proteins
(PLOD lysyl hydroxylase, collagen type V aI, elastin). As expected,
TRKC expression was correlated with a favourable outcome,
consistent with previous reports of this association22,23. In contrast,
genes related to cerebellar differentiation were underexpressed in
poor prognosis tumours, which were dominated by the expression
of genes related to cell proliferation and metabolism (MYBL2,
enolase 1, LDH, HMG1(Y), cytochrome C oxidase) and multidrug
resistance (sorcin). Genes correlated with poor outcome included a
number of the ribosomal protein-encoding genes identi®ed by the
SOM clustering experiments (Fig. 4b). This indicates that whereas
this ribosomal signature is correlated with poor outcome, optimal
outcome prediction requires not only these genes, but also genes
correlated with a favourable outcome that were not identi®ed by the
unsupervised clustering analysis.

The routine clinical implementation of genomics-based outcome
predictors must await con®rmation in independent data sets, and
the models may need to be modi®ed as treatment regimens evolve.
For patients predicted to have a favourable outcome, efforts to
minimize toxicity of therapy might be indicated, whereas for those
predicted not to respond to standard therapy, earlier treatment with
experimental regimens might be considered. This work illustrates
how genomic technologies have the potential to advance treatment
planning beyond the empiric, towards a more molecularly de®ned,
individualized approach to medicine. M

Methods
Patient samples

Patients included 60 children with medulloblastomas, 10 young adults with malignant
gliomas (WHO grades III and IV), 5 children with AT/RTs, 5 with renal/extrarenal
rhabdoid tumours, and 8 children with supratentorial PNETs (see Supplementary
Information I). Medulloblastoma patients were treated with craniospinal irradiation to
2,400±3,600 centiGray (cGy) with a tumour dose of 5,300±7,200 cGy. All patients with
medulloblastoma were treated with chemotherapy consisting of cisplatin and vincristine,
plus combinations of carboplatin, etoposide, cyclophosphamide or lumustine (1-(2-
chloroethyl)-3-cyclohexyl-1-nitrosourea, CCNU) (details in Supplementary Information
II). Samples were snap frozen in liquid nitrogen and stored at -80 8C. Studies were done
with approval of the Committee for Clinical Investigation of Boston Children's Hospital.
The data were organized into three sets: data set A (42 samples containing 10 medullo-
blastomas, 10 malignant gliomas, 10 AT/RTs, 8 PNETs and 4 normal cerebella); data set B
(34 samples containing 9 desmoplastic medulloblastomas and 25 classic medulloblasto-
mas); and data set C (60 samples containing 39 medulloblastoma survivors and 21
treatment failures). The clinical attributes of each of the patients in the study are available
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in Supplementary Information II. Tissues were homogenized in guanidinium isothio-
cyanate and RNA was isolated by centrifugation over a CsCl gradient. RNA integrity was
assessed either by northern blotting or by gel electrophoresis. Ten±twelve micrograms
total RNA was used to generate biotinlylated antisense RNAs, which were hybridized
overnight to HuGeneFL arrays containing 5,920 known genes and 897 expressed sequence
tags, as described previously6. Arrays were scanned on Affymetrix scanners and the
expression value for each gene was calculated using GENECHIP software (Affymetrix,
Santa Clara, California). Minor differences in microarray intensity were corrected using a
linear scaling method as detailed in Supplementary Information I. Scans were rejected if
the scaling factor exceeded 3, fewer than 1,000 genes received `present' calls, or microarray
artefacts were visible.

Preprocessing and clustering

The gene expression data were subjected to a variation ®lter that excluded genes showing
minimal variation across the samples being analysed, as detailed in Supplementary
Information I.

The data were ®rst normalized by standardizing each column (sample) to mean 0 and
variance 1. SOMs were performed using our GeneCluster clustering package (http://
www.genome.wi.mit.edu/MPR/software). Hierarchical clustering was performed using
Cluster and TreeView software5. Principal component analysis (PCA) was performed by
computing and then plotting the three principal components using the S-Plus statistical
software package (www.insightful.com/products/desktop.asp) using default settings.

Supervised learning

Genes correlated with particular class distinctions (for example, classic versus desmo-
plastic medulloblastoma) were identi®ed by sorting all of the genes on the array according
the signal-to-noise statistic (m0 - m1)/(j0 + j1), where m and s represent the median and
standard deviation of expression, respectively, for each class. Similar results were obtained
using a standard t-statistic as the metric ��m0 2 m1�=Î�j2

0=N0 � j2
1=N1��, where N repre-

sents the number of samples in each class (see Supplementary Information). Permutation
of the column (sample) labels was performed to compare these correlations to what would
be expected by chance in 99% of the permutations. For classi®cation, we developed a
modi®cation of the k-NN algorithm26 that predicts the class of a new data point by
calculating the euclidean distance (d) of the new sample to the k nearest samples (for these
experiments we set k = 5) in the training set using normalized gene expression data, and
selecting the class to be that of most of the k samples. The weight given to each neighbour
was 1/d. The k-NN models were evaluated by 60-fold `leave-one-out' cross-validation,
whereby a training set of 59 samples was used to predict the class of a randomly withheld
sample, and the cumulative error rate was recorded. We tested models with variable
numbers of genes (1±200, selected according to their correlation with the survivor versus
treatment failure distinction in the training set) in this manner. An 8-gene k-NN outcome
prediction model yielded the lowest error rate, and was therefore used to generate Kaplan±
Meier survival plots using S-Plus. Predictors using metastatic staging or TRKC expression
were constructed by ®nding the decision boundary half way between the classes, (mclass0
+ mclass1)/2 using either the staging values 0 versus 1, 2, 3, 4 or the continuous TRKC
microarray gene expression levels, and then predicting the unknown sample according to
its location with respect to that boundary.
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Sodium channels are principal molecular determinants respon-
sible for myocardial conduction and maintenance of the cardiac
rhythm. Calcium ions (Ca2+) have a fundamental role in the
coupling of cardiac myocyte excitation and contraction, yet
mechanisms whereby intracellular Ca2+ may directly modulate
Na channel function have yet to be identi®ed. Here we show that
calmodulin (CaM), a ubiquitous Ca2+-sensing protein, binds to
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