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Supplementary Figure Legends 
 
 
Supplementary Figure 1 Schematics of target preparation and bead detection 

of miRNAs. (Left panel) 18 to 26-nucleotide (nt) small RNAs were purified by 

denaturing PAGE (polyacrylamide gel electrophoresis) from total RNAs extracted 

from tissues or cells. Small RNAs underwent two steps of adaptor ligation 

utilizing both the 5’-phosphate and 3’-hydroxl groups, each followed by a 

denaturing purification. Ligation products were reverse-transcribed (RT) and PCR 

amplified using a common set of primers, with biotinylation on the sense primer. 

(Right panel) Denatured targets were hybridized to beads coupled with capture 

probes for miRNAs. After binding to streptavidin-phycoerythrin (SAPE), the 

beads went through a flow cytometer that has two lasers and is capable of 

detecting both the bead identity and fluorescence intensity on each bead.  

 

Supplementary Figure 2 Specificity and accuracy of the bead-based miRNA 

detection platform, probe similarity (for Fig. 1). Eleven synthetic oligonucleotides 

corresponding to human let-7 family of miRNAs or mutants were PCR-labelled. 

Each of the labelled targets was split and hybridized separately on the bead 

platform and on a glass microarray. The synthetic targets are indicated on the 

horizontal axis, and the capture probes are indicated on the vertical axis. The 

similarity of the capture probes are measured by the differences in nucleotides 

(nt) and indicated by shades of blue. 
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Supplementary Figure 3 Noise and linearity of bead detection of miRNAs. (a) 

The noise of target preparation and bead detection was analyzed. Multiple 

analyses of the same RNA samples were performed. Expression data were log2-

transformed after thresholding at 1 to avoid negative numbers. The standard 

deviation (std) of each miRNA was plotted against the mean of that miRNA. Data 

were generated from independent labeling reactions and detections of five 

replicates of MCF-7, four replicates of PC-3, three replicates of HEL, three 

replicates of TF-1 and three replicates of 293 cell RNAs. Note that most miRNAs 

have a standard deviation below 0.75 when their mean is above 5 (in log2 scale). 

(b) Linearity of target preparation and bead detection. miRNAs were labeled and 

profiled from HEL cell total RNA with different starting amounts (10 µg, 5 µg, 2 µg 

and 0.5 µg, respectively). Data are averages of duplicate determinations, 

measured in median fluorescence intensity (MFI). Each line connects the 

readings of one miRNA with different amounts of starting material. 

 

Supplementary Figure 4 Unsupervised analysis of miRNA expression data. 

miRNA profiling data of 218 samples covering multiple tissues and cancers were 

filtered, and centred and normalized for each feature. The data were then 

subjected to hierarchical clustering on both the samples (horizontally oriented) 

and the features (vertically oriented, with probe names on the left), with average-

linkage and Pearson correlation as a similarity measure. Sample names 

(staggered) are indicated on the top and miRNA names on the left. Tissue types 

and malignancy status (MAL; N for normal, T for tumor and TCL for tumor cell 
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line) are represented by colored bars. Samples that belong to the epithelial origin 

(EP) or derived from the gastrointestinal tract (GI) are also annotated below the 

dendrogram. STOM: stomach; PAN: pancreas; KID: kidney; PROST: prostate; 

UT: uterus; MESO: mesothelioma; BRST (breast); FCC: follicular lymphoma; MF: 

mycosis fungoides; COLON: colon; LVR: liver; BLDR: bladder; OVARY: ovary; 

Lung: lung; MELA: melanoma; BRAIN: brain; TALL: T-cell ALL; BALL: B-cell ALL; 

LBL: diffused large-B cell lymphoma; AML: acute myelogenous leukaemia. 

 

Supplementary Figure 5 Comparison of miRNA expression levels of poorly 

differentiated and more-differentiated tumors.  Poorly differentiated tumors (PD) 

with primary origins from colon, ovary, lung, breast (BRST) or lymphnode (LBL) 

were compared to more-differentiated tumors (non-PD) of the corresponding 

tissue types in the miGCM collection. After filtering out non-detectible miRNAs, 

the remaining 173 features were centered and normalized for each tissue type 

separately to a mean of 0 and a standard deviation of 1. A heatmap of the data is 

shown. Samples with the same tissue type and PD status were sorted according 

to total miRNA expression readings, with higher expressing samples on the left. 

Features were sorted according to the variance-thresholded t-test score. 

 

Supplementary Figure 6 Hierarchical clustering analyses of miRNA data and 

mRNA data. For 89 epithelial samples that had successful expression data of 

both miRNAs and mRNAs, hierarchical clustering was performed using average 

linkage and correlation similarity, after gene filtering. Filtering of miRNA data 
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eliminates genes that do not have expression values above a miminum threshold 

in any sample (see Supplementary Methods for details). Three different filtering 

methods were used for mRNA data. The first method (mRNA filt-1) uses the 

same criteria as used for miRNA data, resulting in 14546 genes. The second 

method (mRNA filt-2) employed a variation filter as described 1, and resulted in 

6621 genes. The third method (mRNA filt-3) focused on transcription factors that 

passed the above variation filter, ending with 220 genes. Samples of 

gastrointestinal tract (GI) or non-GI origins are indicated. Tissue type (TT) and 

malignancy status (MAL) for normal (N) or tumor (T) samples are also indicated. 

Note that the GI-derived samples largely cluster together in the space of miRNA 

expression, but not by mRNA expression. Abbreviations:  PAN: pancreas; KID: 

kidney; PROST: prostate; UT: uterus; MESO: mesothelioma; BRST: breast; 

COLON: colon; BLDR: bladder; OVARY: ovary; Lung: lung; MELA: melanoma.  

 

Supplementary Figure 7 In vitro erythroid differentiation. Purified CD34+ cells 

from human umbilical cord blood were induced to differentiate along the erythroid 

lineage. (a) Total cell counts were determined every two days. Data are averages 

of cell counts from a triplicate experiment and error bars represent standard 

deviations. (b) Markers of erythroid differentiation, CD71 and Glycophorin A 

(GlyA), were determined using flow cytometry. Percentages of cells with negative 

(-), low, or positive (+) marker staining are plotted. (c) miRNA expression profiles 

of differentiating erythrocytes were determined on days (d) indicated after 

induction. Data were log2-transformed, averaged among successfully profiled 
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same-day samples and normalized to a mean of 0 and a standard deviation of 1 

for each miRNA. Data were then filtered to eliminate miRNAs that do not have 

expression values higher than a minimum cut-off (7.25 on log2 scale) in any 

sample. A heatmap of miRNA expression is shown, with red color indicating 

higher expression and blue for lower expression. Data shown are from a 

representative differentiation experiment of two performed.   

 

Supplementary Figure 8 Comparing miRNA expression levels with an mRNA 

signature of proliferation. A consensus set of mRNA transcripts that positively 

correlate with proliferation rate was assembled based on published data (see 

Supplementary Data). Data for miRNA and mRNA expression in lung and breast 

(BRST) were centered and normalized for each gene, bringing the mean to 0 and 

the standard deviation to 1. The mean expression of mRNAs correlated with 

proliferation (on the horizontal axis) was plotted against the mean expression of 

miRNA markers for tumor/normal distinction (on the vertical axis). Normal 

samples, poorly differentiated (diff.) tumors and more differentiated tumors are 

represented by round, triangle and square dots, respectively. Note that the 

mRNA proliferation signature distinguishes normal samples from tumors, 

reflecting faster proliferation rates in cancer specimens; however, it does not 

distinguish between poorly differentiated tumors and more differentiated tumors, 

even though the miRNA expression levels in the latter two categories are 

different.  
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Supplementary Methods 
 

Cell culture 

HEL, TF-1, PC-3, MCF-7, HL-60, SKMEL-5, 293 and K562 cells were obtained 

from the American Type Culture Collection (ATCC, Manassas, VA), and cultured 

according to ATCC instructions. All T-cell ALL cell lines were cultured in RPMI 

medium supplemented with 10% fetal bovine serum. CCRF-CEM and LOUCY cells 

were obtained from ATCC. ALL-SIL, HPB-ALL, PEER, TALL1, P12-ICHIKAWA cells 

were obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ, 

Braunschweig, Germany). SUPT11 cells were a kind gift of Dr. Michael Cleary at 

Stanford University. 

Umbilical cord blood was obtained under an IRB approved protocol from the 

Brigham and Women’s Hospital.  Light-density mononuclear cells were separated by 

Ficoll-Hypaque centrifugation, and CD34+ cells (85-90% purity) were enriched using 

Midi-MACS columns (Miltenyi Biotec, Auburn, CA). Erythroid differentiation of the 

CD34+ cells was induced in two stages in liquid culture 2.  For the first seven days, cells 

were cultured in Serum Free Expansion Medium (SFEM, Stem Cell Technologies, 

Tukwila, WA) supplemented with penicillin/streptomycin, glutamine, 100 ng/mL stem 

cell factor (SCF), 10 ng/mL interleukin-3 (IL-3), 1 µM dexamethasone (Sigma), 40 

µg/ml lipids (Sigma), and 3 IU/ml erythropoietin (Epo). After 7 days, cells were cultured 

in the same medium without dexamethasone and supplemented with 10 IU/ml Epo. For 

flow cytometry analyses, approximately 1 to 5 x 105 cells were labeled with a 



MicroRNA Expression Profiles Classify Human Cancers  Manuscript #2005-02-01298 

 8

phycoerythrin-conjugated antibody against glycophorin-A (CD235a, Clone GA-R2, BD-

Pharmingen, San Jose, CA) and a FITC-conjugated antibody against CD71 (Clone M-

A712, BD-Pharmingen). Flow cytometry analyses were performed using a FACScan 

flow cytometer (Becton Dickinson). 

 

 

Glass-slide detection of miRNAs 

Glass slide microarrays were spotted oligonucleotide arrays and hybridized as 

described previously 3. Briefly, 5’-amino-modified oligonucleotide probes (the same ones 

as used on the bead platform) were printed onto amide-binding slides (CodeLink, 

Amersham Biosciences). Printing and hybridization were done following the slides 

manufacturer’s protocols with the following modifications: oligonucleotide concentration 

for printing was 20 µM in 150 mM sodium phosphate, pH 8.5. Printing was done on a 

MicroGrid TAS II arrayer (BioRobotics) at 50% humidity. Labeled PCR product was 

resuspended in hybridization buffer (5X SSC, 0.1% SDS, 0.1 mg/ml salmon sperm DNA) 

and hybridized at 50°C for 10 hours. Microarray slides were scanned using an 

arrayWoRxe biochip reader (Applied Precision) and primary data were analyzed using the 

Digital Genome System suite (Molecularware). 
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Northern blot analysis 

Northern blot analyses were carried out as described 4. Total RNAs from cell lines 

were loaded at 10 µg per lane. Blots were detected with DNA probes complementary for 

human miR-20, miR-181a, miR-15a, miR-16, miR-17-5p, miR-221, let-7a, and miR-21.  

 

Quantitative RT-PCR 

 Reverse transcription (RT) reactions were carried out on 50 to 200 ng total RNA 

in 10 µl reaction volumes, using the TaqMan reverse transcription kit (Applied 

Biosystems, Foster City, CA) and random hexamers, following the manufacturer’s 

protocol. RT products were diluted 5-fold in water and assayed using TaqMan Gene 

Expression Assays (Applied Biosystems) in triplicates, on an ABI PRISM 7900HT real-

time PCR machine. Efficiency of PCR amplification was determined by 5 two-fold-

serial-diluted samples from HL-60 cDNA. The TaqMan Gene Expression Assays used 

are listed in the parentheses. (Dicer1: Hs00998566_m1; Ago2/EIF2C2: Hs00293044_m1; 

Drosha/RNase3L: Hs00203008_m1; DGCR8: Hs00256062_m1; and eukaryotic 18S 

rRNA endogenous control)  

 

Data preprocessing and quality control 

To eliminate bead-specific background, the reading of every bead for every 

sample was first processed by subtracting the average readings of that particular bead in 

the two-embedded mock-PCR samples in each plate. As stated in the Methods, every 

sample was assayed in three wells. Each of the three wells contained 94 probes (19 
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common probes and 75 unique ones). Out of the 19 common probes are the two pre-

labeling controls and the two post-labeling controls. Quality control was performed as 

part of the preprocessing by requiring that the reading from each control probe exceeds 

some minimal probe-specific threshold. These thresholds were determined by identifying 

a natural lower cutoff, i.e. a dip, in the distribution of each control probe. The cutoff 

values were chosen based on a set of samples in a pilot study. The lower post-control 

should be greater than 500 and the higher post-control must exceed 2450. The lower and 

higher pre-controls should exceed 1400 and 2000 respectively (after well-to-well scaling). 

In this study, about 70% of the samples passed the quality control. Note that the above 

specifications were used on version 1 of the platform. A similar preprocessing was 

performed on version 2 of the platform. 

Preprocessing was done in four steps: (i) well-to-well scaling – the reading from 

each well were scaled such that the total of the two post-labeling controls, in that well, 

became 4500 (a median value based on a pilot study); (ii) sample scaling – the 

normalized readings were scaled such that total of the 6 pre-labeling controls in each 

sample reached 27,000 (a median value based on a pilot study); (iii) thresholding at 32 

(see Supplementary Data); and (iv) log2 transformation. All control probes, as well as a 

probe (EAM296) which had a high background in the absence of any prepared target, 

were removed before any further analysis. After eliminating these probes, 217 (255 for 

version 2 of the platform) features were left and these were used throughout the analysis.   
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Hierarchical clustering 

miRNA expression data first underwent filtering. The purpose of this filtering is 

to remove features which have no detectable expression and thus are uninformative but 

may introduce noise to the clustering. A miRNA was regarded as “not expressed” or “not 

detectible”, if in none of the samples, that particular miRNA has an expression value 

above a minimal cutoff. We applied a cutoff of 7.25 (after data were log2-transformed). 

This cutoff value was determined based on noise analyses of target preparation and bead 

detection (see Supplementary Data Section and Supplementary Fig. 3a). In that 

experiment, the majority of features had a standard deviation below 0.75 when their mean 

was over 5 in log2-transformed data. Thus we used a cutoff of 3 standard deviations 

above the minimal expression level (5+3x0.75=7.25). Any feature that is not expressed 

under this criterion was filtered out before clustering. Data were then centered and 

normalized for each feature, bringing the mean to 0 and the standard deviation to 1. This 

equalizes the contributions of all features. For hierarchical clustering, we used Pearson 

correlation as a similarity measure, and used the average-linkage algorithm 5 for both the 

samples and the features. 

 

k-Nearest Neighbor (kNN) prediction 

After feature filtration (described in the hierarchical clustering), marker selection 

was performed on 187 features. The variance-thresholded t-test score was used as a 

measure to score features. A minimal standard deviation of 0.75 was applied. Markers 

were searched among the filtered miRNAs. Nominal P-value was calculated for each 
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feature, by permuting the class labels of the samples. In order to select features that best 

distinguish tumors from normal samples on all tissue types, i.e. taking into account the 

confounding tissue-type phenotype, restricted permutations were performed 6. In 

restricted permutations, one shuffles the tumor/normal labels only within each tissue type 

to get the distribution under the desired null hypothesis. To achieve accurate estimates for 

the p-values, 400 times the number of features (400x187=74,800) of iterations were 

performed. To correct for multiple-hypotheses testing, markers were selected requiring 

the Bonferroni-corrected P-values to be less than 0.05. kNN prediction was performed 

using the kNN module in the GenePattern software, with k=3 and a Euclidean distance 

measure (GenePattern at 

http://www.broad.mit.edu/cancer/software/genepattern/index.html).  

 

Probabilistic Neural Network (PNN) prediction 

A two-class PNN 7 prediction was calculated based on the following class 

posterior probability: 
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where x is the predicted sample and c is the class for which the posterior 

probability is calculated. The training set samples are yi, nc is the number of samples of 

class c in the training set, and D(x,yi) is the distance between the predicted sample and 

training sample i. In our case, the sum in the denominator (of c’) is over two class values, 

since we predict a sample either to belong or not to belong to a specific tissue-type. Note 



MicroRNA Expression Profiles Classify Human Cancers  Manuscript #2005-02-01298 

 13

that the first step is derived using Bayes rule which allows to incorporate a prior 

probability for each class, )(cP . We used a uniform prior over all 11 tissue-types which 

translated to 1/11 for being in a certain type and 10/11 for not being in that type. We did 

not use the tissue-type frequencies in the training set since they likely do not represent the 

frequencies of different tumors in the general population. 

  Multi-class prediction using PNN was achieved by breaking down the question 

into multiple one vs. the rest (OVR) predictions. To perform PNN OVR two-class 

classification, we built a model based on the training set. This model has two parameters: 

the number of features used, and σ (the standard deviation of the Gaussian kernel which 

is used to calculate the contribution of each training sample to the classification). The 

optimal parameters (for each OVR classifier) were selected using a leave-one-out cross-

validation procedure from all possible parameter-pairs in which the number of features 

ranges from 2 to 30 in steps of 2 and σ takes the values from 1 to 4 times the median 

nearest neighbor distance, in steps of 0.5 (a total number of 105 combinations). The best 

model was determined by (i) the fewest number of leave-one-out errors on the training set, 

which include both false-positive and false-negative errors with the same weight, and (ii) 

among all conditions with the same error rate, the parameters that gave rise to the 

maximal mean log-likelihood of the training set were selected. The mean log-likelihood 

is defined as ))|c(log(
examples  trainingof#

1]};{[ i ii Mi PML xx ∑=  where ci is the true 

class of sample xi and the probability is evaluated using the model M. The top n features 

were selected using the variance-thresholded t-test score in a balanced manner; n/2 

features with the top positive scores and n/2 features with most negative scores. The 

cosine distance measure was used; D(x,yi)=1-cosine(x,yi).  
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P-value calculation for the number of correct classifications 

A Binomial distribution was used to calculate the probability to obtain at least the 

number of correct classifications (on the test set) as we observed. Assuming a random 

classifier would predict the tissue-type randomly with a uniform distribution over the 11 

possible outcomes, the probability of a correct classification is 1/11. This is applicable to 

the PNN prediction, in which the background frequency of each tissue type was assumed 

to be 1/11. The p-value is, therefore, the tail of the Binomial distribution from the 

observed number of correct classifications, s, to the total number of samples in the test set, 

n: 
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= ∑ )1(value-P  where p is one over the number of tissue-types (1/11, in 

our case) and t is the number of correct classification which goes from the observed 

number, s, to the maximum of possible correct samples n.   
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Supplementary Data 

 

Development of a bead-based miRNA profiling platform 

Compared with glass-based microarrays, bead-based profiling solutions have the 

advantages of higher sample throughput and liquid phase hybridization kinetics, while 

having the disadvantage of lower feature throughput. For the genomic analysis of miRNA 

expression, this disadvantage is negligible because of the relative small number of 

identified miRNAs. Since new miRNAs are still being discovered, the flexibility and ease 

of these “liquid chips” to introduce new features is of particular value. 

We developed a bead-based miRNA profiling platform, as detailed in the 

Methods section. Version 1 of this platform (used for most samples in this study) covers 

164 human, 185 mouse, and 174 rat miRNAs, according to Rfam 5.0 miRNA registry 

database 8, 9 (http://www.sanger.ac.uk/Software/Rfam/mirna/index.shtml). Version 2 of 

this platform (used for the acute lymphoblastic leukemia study and the erythroid 

differentiation study) covers additional 24 human, 13 mouse and 2 rat miRNAs (refer to 

Supplementary Table 1 for details).  

 This profling platform is compatible in theory with any miRNA labeling method 

that labels the sense strand. For our study, we followed one described by Miska et al. 3 

that labels mature miRNAs through adaptor ligation, reverse-transcription and PCR 

amplification. We reasoned that the amplification step will allow future use of these 

labeled materials, which were from precious clinical samples. Defined amounts of 

synthetic artificial miRNAs were added into each sample of total RNAs as pre-labeling 

controls. This allows us to normalize the profiling data according to the starting amount 
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of total RNA, using readings from capture probes for these synthetic miRNAs (see 

Methods for details). This contrasts the use of total feature intensity to normalize the 

readings of different samples; the hidden assumption of the latter is that the total miRNA 

expression is the same in all samples, which may not be true considering the small known 

number of miRNAs. 

 We analyzed the variation caused by labeling and detection using repetitive 

assays of the same RNA samples of a few cell lines originated from different tissues; 

these cell lines have different miRNA profiles. We plotted the standard deviation of each 

probe versus its means, after the data were log2-transformed (Supplementary Fig. 3a). 

The variations are large for low means, and decrease and stabilize with increasing means. 

For most measured features with mean above 5 (32 before log2-transformation), the 

standard deviation is below 0.75. This value of mean provides a good cutoff for a lower 

threshold of the data, which was thus used in this study.  

We compared the data from expression profiles and northern blots on a panel of 7 

cell lines; the same quantities of the same starting total RNAs were used for both 

analyses. We picked eight miRNAs that are expressed in any of these cell lines and that 

show differential expression according to the expression profiles, and probed them with 

northern blots. All eight display good concordance between the two assays (Fig. 1c), 

indicating that our profiling platform has good accuracy.  

We next examined the linearity of profiling (both labeling and detection) by 

measuring a series of starting materials, covering 0.5 µg to 10 µg of total RNAs from 

HEL cells. Most miRNAs report good linearity up to 3500 median fluorescence intensity 

readings (after normalization with pre-labeling-controls, Supplementary Fig. 3b). Taken 
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together with the threshold level of 32, the profiling method has roughly 100-fold of 

dynamic range.  

One common issue that affects hybridization-based analyses for miRNAs is the 

specificity of detection, since many miRNAs are closely-related on the sequence level. 

To assess the specificity of detection, we synthesized oligonucleotides corresponding to 

the reverse-transcription products of adaptor-ligated miRNAs, in this case the human let-

7 family of miRNAs and a few artificial mutants. The sequences for these 

oligonucleotides, as well as the alignment of human let-7 miRNAs and mutant sequences, 

are listed below. They were then labeled through PCR using the same primer sets. This 

provides a collection of sequence-pairs that differ by one, two, or a few nucleotides 

(Supplementary Fig. 2 and the alignment below). Results are presented in the main text 

and in Fig. 1a,b.  

Alignment of Human let-7 miRNAs and Mutant Sequences 

UGAGGUAGUAGUUUGUACAGU hsa-let-7g 
UGAGGUAGUACUUUCUACAGUUA let-7-mut1 
UGAGGUAGUAGGUUGUAUGGUU hsa-let-7c 
UGAGGUACUAGCUUGUAUGGUU let-7-mut2 
UGAGGUAGUAGGUUGUGUGGUU hsa-let-7b 
UGAGGUACUAGCUUGUGUGGUU let-7-mut3 
UGAGGUAGUAGGUUGUAUAGUU hsa-let-7a 
UGAGGUAGGAGGUUGUAUAGU hsa-let-7e 
AGAGGUAGUAGGUUGCAUAGU hsa-let-7d 
UGAGGUAGUAGAUUGUAUAGUU hsa-let-7f 
UGAGGUAGUAGUUUGUGCU hsa-let-7i 

 

 

Table: Oligonucleotide Sequences for Detection Specificity Experiment 

miRNA or 
Mutant Name Oligonucleotide Sequence (5’ to 3’) 

hsa-let-7g CTGGAATTCGCGGTTAAAACTGTACAAACTACTACCTCATTTAGTGAGGAATTCCGT 
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let-7-mut1 CTGGAATTCGCGGTTAAATAACTGTAGAAAGTACTACCTCATTTAGTGAGGAATTCCGT

hsa-let-7c CTGGAATTCGCGGTTAAAAACCATACAACCTACTACCTCATTTAGTGAGGAATTCCGT 

let-7-mut2 CTGGAATTCGCGGTTAAAAACCATACAAGCTAGTACCTCATTTAGTGAGGAATTCCGT 

hsa-let-7b CTGGAATTCGCGGTTAAAAACCACACAACCTACTACCTCATTTAGTGAGGAATTCCGT 

let-7-mut3 CTGGAATTCGCGGTTAAAAACCACACAAGCTAGTACCTCATTTAGTGAGGAATTCCGT 

hsa-let-7a CTGGAATTCGCGGTTAAAAACTATACAACCTACTACCTCATTTAGTGAGGAATTCCGT 

hsa-let-7e CTGGAATTCGCGGTTAAAACTATACAACCTCCTACCTCATTTAGTGAGGAATTCCGT 

hsa-let-7d CTGGAATTCGCGGTTAAAACTATGCAACCTACTACCTCTTTTAGTGAGGAATTCCGT 

hsa-let-7f CTGGAATTCGCGGTTAAAAACTATACAATCTACTACCTCATTTAGTGAGGAATTCCGT 

hsa-let-7i CTGGAATTCGCGGTTAAAAGCACAAACTACTACCTCATTTAGTGAGGAATTCCGT 
 

Hierarchical clustering of multiple cancer and normal samples 

 We applied this miRNA profiling platform for 140 human cancer specimens, 46 

normal human tissues, and various cell lines. The collection of samples covers more than 

ten tissues and cancer types. This collection was referred to as miGCM (for miRNA 

Global Cancer Map). We first examined the miRNA expression profiles to see whether 

we can detect previously reported tissue-restricted expression of miRNAs. Indeed, we 

observed tissue-restricted expression patterns. For example, miR-122a, a reported liver-

specific miRNA 10, is exclusively expressed in the liver samples, whereas miR-124a, a 

brain-specific miRNA 10, is abundantly expressed in the brain samples.  

We performed hierarchical clustering on this data set, as described in the Methods. 

Hierarchical clustering is an unsupervised analysis tool that captures internal relationship 

between the samples. It organizes the samples (or features) into a tree structure (a 

dendrogram) according to the similarity between the samples (or the features). Close 

pairs of samples (ones with similar expression profiles) will generally be connected in the 

dendrogram at an earlier phase, while samples with larger distances (with less similar 
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expression profiles) will be connected at a later phase (details can be found in reference 

11). The detailed result of hierarchical clustering on both the samples and features using 

correlation metrics is presented in Fig. 2a and Supplementary Fig. 4.  

 

Comparison of miRNA and mRNA clustering in regard to GI samples 

 After finding that the gastrointestinal tract samples were clustered together (main 

text and Fig. 2a), we asked whether or not this structure is similarly displayed by 

clustering in the mRNA space. We took 89 epithelial samples that have both successful 

mRNA and miRNA profiling data, and subjected them to hierarchical clustering. Both 

data underwent identical gene filtering, i.e. a lower threshold filter to eliminate genes that 

do not have expression values over 7.25 (on log2 scale) in any sample, and underwent the 

same clustering procedure. This gene filtering resulted in 195 miRNAs and 14546 

mRNAs. Data were presented in the main text, Fig. 2c and Supplementary Fig. 6. Results 

show that the mRNA clustering does not recover the coherence of GI samples, as 

identified in the miRNA expression space. Of note, the exact outcome of hierarchical 

clustering is dependent on the collection of samples present for analysis. Consequently, 

the cluster of the GI samples in miRNA clustering in Fig. 2c is slightly different from that 

of Fig. 2a, since the latter comprises of many more samples.  

 In order to test whether the lack of coherence of GI samples in the mRNA 

clustering is sensitive to the choice of genes that were used to represent each sample, we 

tested two additional gene filtering methods. First, we used a variation filter as was 

performed in Ramaswamy et al. 1 (lower threshold of 20, upper threshold of 16000, the 

maximum value is at least 5 fold greater than the minimum value, and the maximum 
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value is more than 500 greater than the minimum value), which yielded 6621 genes. 

Second, we examined only transcription factors, a set of gene regulators as are miRNAs. 

We took the genes that passed the above variation filter and that are also annotated with 

transcription factor activity in the Gene Ontology (www.geneontology.org, GO:0003700). 

This resulted in 220 transcription factors as listed in the table below. Similar to the 

minimum-expression filter on the mRNA data, these two gene selection methods yielded 

clustering by tissue types to a certain degree. However, none recovered the gut coherence 

(Supplementary Fig. 6). This indicated either that the miRNA space contains some 

different information from the mRNA space or that in the mRNA space, the gut signal is 

masked by other signals or noise. Importantly, a set of transcription factors did not mimic 

miRNAs in this test, suggesting the difference is not solely due to the gene regulator 

nature of miRNAs.  

 

Table: 220 mRNA genes with transcription factor activity annotation 

Chip Probe Set ID Gene Title 
Hu6800 AB000468_at ring finger protein 4 
Hu6800 D43642_at transcription factor-like 1 
Hu6800 D83784_at pleiomorphic adenoma gene-like 2 
Hu6800 D86479_at AE binding protein 1 
Hu6800 D87673_at heat shock transcription factor 4 

Hu6800 J03161_at 
serum response factor (c-fos serum response element-
binding transcription factor) 

Hu6800 J03827_at nuclease sensitive element binding protein 1 
Hu6800 L02785_at solute carrier family 26, member 3 
Hu6800 L11672_at zinc finger protein 91 (HPF7, HTF10) 
Hu6800 L11672_r_at zinc finger protein 91 (HPF7, HTF10) 
Hu6800 L13203_at forkhead box I1 
Hu6800 L13740_at nuclear receptor subfamily 4, group A, member 1 
Hu6800 L17131_rna1_at high mobility group AT-hook 1 
Hu6800 L20298_at core-binding factor, beta subunit 
Hu6800 L22342_at SP110 nuclear body protein 
Hu6800 L22454_at nuclear respiratory factor 1 
Hu6800 L40904_at peroxisome proliferative activated receptor, gamma 
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Hu6800 M14328_s_at enolase 1, (alpha) 
Hu6800 M16938_s_at homeo box C6 

Hu6800 M19720_rna1_at 
v-myc myelocytomatosis viral oncogene homolog 1, lung 
carcinoma derived (avian) 

Hu6800 M23263_at 

androgen receptor (dihydrotestosterone receptor; testicular 
feminization; spinal and bulbar muscular atrophy; Kennedy 
disease) 

Hu6800 M24900_at 

thyroid hormone receptor, alpha (erythroblastic leukemia 
viral (v-erb-a) oncogene homolog, avian) /// nuclear 
receptor subfamily 1, group D, member 1 

Hu6800 M25269_at ELK1, member of ETS oncogene family 
Hu6800 M31627_at X-box binding protein 1 
Hu6800 M36542_s_at POU domain, class 2, transcription factor 2 
Hu6800 M38258_at retinoic acid receptor, gamma 
Hu6800 M64673_at heat shock transcription factor 1 

Hu6800 M65214_s_at 
transcription factor 3 (E2A immunoglobulin enhancer 
binding factors E12/E47) 

Hu6800 M68891_at GATA binding protein 2 
Hu6800 M76732_s_at msh homeo box homolog 1 (Drosophila) 
Hu6800 M77698_at YY1 transcription factor 
Hu6800 M79462_at promyelocytic leukemia 
Hu6800 M79463_s_at promyelocytic leukemia 
Hu6800 M93650_at paired box gene 6 (aniridia, keratitis) 
Hu6800 M95929_at sideroflexin 3 
Hu6800 M97676_at msh homeo box homolog 1 (Drosophila) 
Hu6800 M97935_s_at signal transducer and activator of transcription 1, 91kDa 
Hu6800 M97936_at signal transducer and activator of transcription 1, 91kDa 
Hu6800 M99701_at transcription elongation factor A (SII)-like 1 
Hu6800 S81264_s_at T-box 2 
Hu6800 U00968_at sterol regulatory element binding transcription factor 1 
Hu6800 U11861_at maternal G10 transcript 
Hu6800 U18018_at ets variant gene 4 (E1A enhancer binding protein, E1AF) 
Hu6800 U20734_s_at jun B proto-oncogene 
Hu6800 U28687_at zinc finger protein 157 (HZF22) 

Hu6800 U29175_at 
SWI/SNF related, matrix associated, actin dependent 
regulator of chromatin, subfamily a, member 4 

Hu6800 U35048_at transforming growth factor beta 1 induced transcript 4 
Hu6800 U36922_at forkhead box O1A (rhabdomyosarcoma) 
Hu6800 U39840_at forkhead box A1 

Hu6800 U44755_at 
small nuclear RNA activating complex, polypeptide 2, 
45kDa 

Hu6800 U51003_s_at distal-less homeo box 2 
Hu6800 U51127_at interferon regulatory factor 5 
Hu6800 U53830_at interferon regulatory factor 7 
Hu6800 U58681_at neurogenic differentiation 2 
Hu6800 U63842_at neurogenin 1 

Hu6800 U69126_s_at 
KH-type splicing regulatory protein (FUSE binding protein 
2) 

Hu6800 U72649_at BTG family, member 2 
Hu6800 U73843_at E74-like factor 3 (ets domain transcription factor, epithelial-



MicroRNA Expression Profiles Classify Human Cancers  Manuscript #2005-02-01298 

 22

specific ) 
Hu6800 U76388_at nuclear receptor subfamily 5, group A, member 1 
Hu6800 U81599_at homeo box B13 
Hu6800 U81600_at paired related homeobox 2 
Hu6800 U82759_at homeo box A9 
Hu6800 U85193_at nuclear factor I/B 

Hu6800 U85658_at 
transcription factor AP-2 gamma (activating enhancer 
binding protein 2 gamma) 

Hu6800 U95040_at tripartite motif-containing 28 
Hu6800 X03635_at estrogen receptor 1 
Hu6800 X06614_at retinoic acid receptor, alpha 
Hu6800 X12794_at nuclear receptor subfamily 2, group F, member 6 
Hu6800 X13293_at v-myb myeloblastosis viral oncogene homolog (avian)-like 2
Hu6800 X13810_s_at POU domain, class 2, transcription factor 2 
Hu6800 X16316_at vav 1 oncogene 
Hu6800 X16665_at homeo box B2 
Hu6800 X16706_at FOS-like antigen 2 
Hu6800 X17360_rna1_at homeo box D4 
Hu6800 X17651_at myogenin (myogenic factor 4) 
Hu6800 X51345_at jun B proto-oncogene 
Hu6800 X52541_at early growth response 1 

Hu6800 X55005_rna1_at 
thyroid hormone receptor, alpha (erythroblastic leukemia 
viral (v-erb-a) oncogene homolog, avian) 

Hu6800 X55037_s_at GATA binding protein 3 
Hu6800 X56681_s_at jun D proto-oncogene 
Hu6800 X58072_at GATA binding protein 3 
Hu6800 X60003_s_at cAMP responsive element binding protein 1 
Hu6800 X61755_rna1_s_at homeo box C5 
Hu6800 X65463_at retinoid X receptor, beta 
Hu6800 X66079_at Spi-B transcription factor (Spi-1/PU.1 related) 

Hu6800 X68688_rna1_s_at 
zinc finger protein 11b (KOX 2) /// zinc finger protein 33a 
(KOX 31) 

Hu6800 X69699_at paired box gene 8 
Hu6800 X70683_at SRY (sex determining region Y)-box 4 

Hu6800 X72632_s_at 

thyroid hormone receptor, alpha (erythroblastic leukemia 
viral (v-erb-a) oncogene homolog, avian) /// nuclear 
receptor subfamily 1, group D, member 1 

Hu6800 X78992_at zinc finger protein 36, C3H type-like 2 
Hu6800 X85786_at regulatory factor X, 5 (influences HLA class II expression) 
Hu6800 X90824_s_at upstream transcription factor 2, c-fos interacting 

Hu6800 X93996_rna1_at 
myeloid/lymphoid or mixed-lineage leukemia (trithorax 
homolog, Drosophila); translocated to, 7 

Hu6800 X96401_at MAX binding protein 
Hu6800 X96506_s_at DR1-associated protein 1 (negative cofactor 2 alpha) 
Hu6800 X99101_at estrogen receptor 2 (ER beta) 
Hu6800 Y08976_at FEV (ETS oncogene family) 
Hu6800 Z11899_s_at POU domain, class 5, transcription factor 1 
Hu6800 Z17240_at high-mobility group box 2 
Hu6800 Z22951_rna1_s_at --- 
Hu6800 Z49825_s_at hepatocyte nuclear factor 4, alpha 
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Hu6800 Z50781_at delta sleep inducing peptide, immunoreactor 
Hu6800 Z56281_at interferon regulatory factor 3 
Hu35KsubA AA010750_at LAG1 longevity assurance homolog 2 (S. cerevisiae) 
Hu35KsubA AA036900_at FOS-like antigen 2 
Hu35KsubA AA091017_at nuclear factor of activated T-cells 5, tonicity-responsive 
Hu35KsubA AA099501_at p66 alpha 
Hu35KsubA AA127183_s_at serologically defined colon cancer antigen 33 
Hu35KsubA AA157520_at signal transducer and activator of transcription 5B 
Hu35KsubA AA287840_at Runt-related transcription factor 2 
Hu35KsubA AA328684_at SLC2A4 regulator 
Hu35KsubA AA347664_at lymphoid enhancer-binding factor 1 
Hu35KsubA AA355201_at SRY (sex determining region Y)-box 4 
Hu35KsubA AA418098_at cAMP responsive element binding protein-like 2 
Hu35KsubA AA424381_s_at Forkhead box C1 
Hu35KsubA AA431268_at --- 
Hu35KsubA AA436315_at forkhead box O3A 
Hu35KsubA AA456687_at nuclear factor I/A 
Hu35KsubA AA459542_s_at regulatory factor X-associated ankyrin-containing protein 
Hu35KsubA AA489299_at transcriptional adaptor 3 (NGG1 homolog, yeast)-like 
Hu35KsubA AA504413_at Solute carrier family 25, member 29 
Hu35KsubA AB002302_at myeloid/lymphoid or mixed-lineage leukemia 4 
Hu35KsubA AB002305_at aryl-hydrocarbon receptor nuclear translocator 2 
Hu35KsubA AB004066_at basic helix-loop-helix domain containing, class B, 2 
Hu35KsubA C02099_s_at methionine sulfoxide reductase B2 
Hu35KsubA D45333_at prefoldin 1 
Hu35KsubA D61676_at Pre-B-cell leukemia transcription factor 1 
Hu35KsubA D82636_at CCR4-NOT transcription complex, subunit 7 
Hu35KsubA H45647_at hairy/enhancer-of-split related with YRPW motif 1 
Hu35KsubA IKAROS_at zinc finger protein, subfamily 1A, 1 (Ikaros) 
Hu35KsubA L07592_at peroxisome proliferative activated receptor, delta 
Hu35KsubA L13203_at forkhead box I1 

Hu35KsubA L16794_s_at 
MADS box transcription enhancer factor 2, polypeptide D 
(myocyte enhancer factor 2D) 

Hu35KsubA L40904_at peroxisome proliferative activated receptor, gamma 

Hu35KsubA L41067_at 
nuclear factor of activated T-cells, cytoplasmic, calcineurin-
dependent 3 

Hu35KsubA M23263_at 

androgen receptor (dihydrotestosterone receptor; testicular 
feminization; spinal and bulbar muscular atrophy; Kennedy 
disease) 

Hu35KsubA M62626_s_at T-cell leukemia, homeobox 1 
Hu35KsubA M79462_at promyelocytic leukemia 
Hu35KsubA M92299_s_at homeo box B5 
Hu35KsubA M93650_at paired box gene 6 (aniridia, keratitis) 
Hu35KsubA M96577_s_at E2F transcription factor 1 
Hu35KsubA M97676_at msh homeo box homolog 1 (Drosophila) 
Hu35KsubA N32724_at high-mobility group 20B 
Hu35KsubA N83192_at KIAA0669 gene product 
Hu35KsubA RC_AA029288_at zinc finger protein 83 (HPF1) 
Hu35KsubA RC_AA040699_at ELK3, ETS-domain protein (SRF accessory protein 2) 
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Hu35KsubA RC_AA045545_at glucocorticoid modulatory element binding protein 2 

Hu35KsubA RC_AA055932_at 
TAF5-like RNA polymerase II, p300/CBP-associated factor 
(PCAF)-associated factor, 65kDa 

Hu35KsubA RC_AA065094_at trinucleotide repeat containing 4 
Hu35KsubA RC_AA069549_at zinc finger protein 37a (KOX 21) 
Hu35KsubA RC_AA114866_s_at homeo box A11 
Hu35KsubA RC_AA121121_at Huntingtin interacting protein 2 
Hu35KsubA RC_AA135095_at high-mobility group 20B 

Hu35KsubA RC_AA136474_at 
Meis1, myeloid ecotropic viral integration site 1 homolog 2 
(mouse) 

Hu35KsubA RC_AA150205_at Kruppel-like factor 7 (ubiquitous) 
Hu35KsubA RC_AA156112_at Krueppel-related zinc finger protein 
Hu35KsubA RC_AA156359_at TAR DNA binding protein 
Hu35KsubA RC_AA156792_at hairy/enhancer-of-split related with YRPW motif-like 
Hu35KsubA RC_AA235980_at transcription factor EB 
Hu35KsubA RC_AA252161_at p66 alpha 
Hu35KsubA RC_AA253429_at zinc finger protein 175 
Hu35KsubA RC_AA256678_at CCR4-NOT transcription complex, subunit 7 
Hu35KsubA RC_AA256680_at Nuclear factor I/B 
Hu35KsubA RC_AA280130_at checkpoint suppressor 1 
Hu35KsubA RC_AA284143_at arginine-glutamic acid dipeptide (RE) repeats 
Hu35KsubA RC_AA286809_at upstream binding protein 1 (LBP-1a) 
Hu35KsubA RC_AA292717_at forkhead box P1 
Hu35KsubA RC_AA347288_at growth arrest-specific 7 
Hu35KsubA RC_AA379087_s_at apoptosis antagonizing transcription factor 
Hu35KsubA RC_AA393876_s_at nuclear receptor subfamily 2, group F, member 2 
Hu35KsubA RC_AA419547_at E74-like factor 5 (ets domain transcription factor) 
Hu35KsubA RC_AA421050_at zinc finger protein 444 
Hu35KsubA RC_AA425309_at Nuclear factor I/B 
Hu35KsubA RC_AA428024_at ubinuclein 1 
Hu35KsubA RC_AA430032_at pituitary tumor-transforming 1 
Hu35KsubA RC_AA431399_at arginine-glutamic acid dipeptide (RE) repeats 
Hu35KsubA RC_AA436608_at SATB family member 2 
Hu35KsubA RC_AA443090_s_at interferon regulatory factor 7 
Hu35KsubA RC_AA443962_at MYST histone acetyltransferase 2 
Hu35KsubA RC_AA452256_at zinc finger protein 265 
Hu35KsubA RC_AA456289_at nuclear factor I/A 
Hu35KsubA RC_AA456677_at zinc finger protein, subfamily 1A, 4 (Eos) 
Hu35KsubA RC_AA464251_at LOC440448 

Hu35KsubA RC_AA476720_at 
nuclear factor of activated T-cells, cytoplasmic, calcineurin-
dependent 1 

Hu35KsubA RC_AA478590_at forkhead box O3A 
Hu35KsubA RC_AA478596_at zinc fingers and homeoboxes 2 

Hu35KsubA RC_AA504110_at 
v-ets erythroblastosis virus E26 oncogene homolog 1 
(avian) 

Hu35KsubA RC_AA504144_at CAMP responsive element binding protein 1 
Hu35KsubA RC_AA504147_s_at Solute carrier family 25, member 29 
Hu35KsubA RC_AA609017_s_at forkhead box O1A (rhabdomyosarcoma) 
Hu35KsubA RC_AA621179_at forkhead box J2 
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Hu35KsubA RC_AA621680_at Kruppel-like factor 4 (gut) 

Hu35KsubA RC_D59299_i_at 
myeloid/lymphoid or mixed-lineage leukemia (trithorax 
homolog, Drosophila); translocated to, 10 

Hu35KsubA U09366_at zinc finger protein 133 (clone pHZ-13) 
Hu35KsubA U17163_at ets variant gene 1 
Hu35KsubA U28687_at zinc finger protein 157 (HZF22) 
Hu35KsubA U33749_s_at thyroid transcription factor 1 
Hu35KsubA U53831_s_at interferon regulatory factor 7 
Hu35KsubA U62392_at zinc finger protein 193 
Hu35KsubA U63824_at TEA domain family member 4 
Hu35KsubA U76388_at nuclear receptor subfamily 5, group A, member 1 
Hu35KsubA U81600_at paired related homeobox 2 

Hu35KsubA U85707_at 
Meis1, myeloid ecotropic viral integration site 1 homolog 
(mouse) 

Hu35KsubA U88047_at AT rich interactive domain 3A (BRIGHT- like) 
Hu35KsubA U89995_at forkhead box E1 (thyroid transcription factor 2) 
Hu35KsubA W20276_f_at CG9886-like 
Hu35KsubA W26259_at forkhead box O3A 

Hu35KsubA W55861_at 
Myeloid/lymphoid or mixed-lineage leukemia (trithorax 
homolog, Drosophila) 

Hu35KsubA W67850_s_at TGFB-induced factor 2 (TALE family homeobox) 
Hu35KsubA X13403_s_at POU domain, class 2, transcription factor 1 
Hu35KsubA X16666_s_at homeo box B1 
Hu35KsubA X52402_s_at homeo box C5 
Hu35KsubA X52560_s_at CCAAT/enhancer binding protein (C/EBP), beta 
Hu35KsubA X58431_rna2_s_at homeo box B6 

Hu35KsubA X68688_rna1_s_at 
zinc finger protein 11b (KOX 2) /// zinc finger protein 33a 
(KOX 31) 

Hu35KsubA X70683_at SRY (sex determining region Y)-box 4 
Hu35KsubA X99101_at estrogen receptor 2 (ER beta) 
Hu35KsubA X99350_rna1_at forkhead box J1 
Hu35KsubA Y10746_at methyl-CpG binding domain protein 1 
Hu35KsubA Z14077_s_at YY1 transcription factor 

 

Normal/tumor classifier and kNN prediction of mouse lung samples 

In order to build a classifier of normal samples vs. tumor samples based on the 

miGCM collection, we first picked tissues that have enough normal and tumor samples 

(at least 3 in each class). The following list summarizes the tissues for this analysis. 

Table: Number of Training Samples Used to Build the Normal/Tumor Classifier 

Tissue Number of Normal Number of Tumor 
Colon 5 10 
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Kidney 3 5 
Prostate 8 6 
Uterus 9 10 
Lung 4 6 
Breast 3 6 

 

kNN 11 is a predicting algorithm that learns from a training data set (in this case, 

the above samples from the miGCM data set) and predicts samples in a test data set (in 

this case, the mouse lung sample set). A set of markers (features that best distinguishes 

two classes of samples, in this case, normal vs. tumor) was selected using the training 

data set. Distances between the samples were measured in the space of the selected 

markers. Prediction is performed, one test sample at a time, by: (i), identifying the k 

nearest samples (neighbors) of the test sample among the training data set; and (ii) 

assigning the test sample to the majority class of these k samples. 

We first selected markers that best differentiate the normal and tumor samples 

(see Supplementary Methods) out of the 187 features that passed the filter (which was 

applied on the training set alone). This generated a list of 131 markers that each has a p-

value <0.05 after Bonferroni correction; 129/131 markers are over-expressed in normal 

samples, whereas 2/131 are over-expressed in the tumor samples.  The following table 

lists these markers. 

Table: Normal/Tumor Makers Selected On the Training Set 

Probe Description Bonferroni-
corrected p-value 

Variance-thresholded 
t-test score 

EAM159 hmr_miR-130a   0 10.984 
EAM331 hmr_miR-30e    0 10.756 
EAM311 hmr_miR-101    0 10.392 
EAM299 hmr_miR-195    0 9.957 
EAM314 hmr_miR-126    0 9.498 
EAM300 h_miR-197      0 8.762 
EAM181 hmr_let-7f     0 8.299 
EAM380 r_miR-140*     0 8.238 
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EAM111 hm_let-7g      0 8.235 
EAM381 r_miR-151*     0 8.198 
EAM218 hmr_miR-152    0 8.180 
EAM183 hmr_let-7i     0 8.098 
EAM253 hmr_miR-218    0 8.077 
EAM155 hmr_miR-136    0 8.058 
EAM192 hmr_miR-126*   0 7.991 
EAM222 hm_miR-15a     0 7.970 
EAM161 hmr_miR-28     0 7.949 
EAM184 hmr_miR-100    0 7.894 
EAM271 hmr_miR-30c    0 7.848 
EAM270 hmr_miR-30b    0 7.731 
EAM303 hm_miR-199a*   0 7.519 
EAM121 hmr_miR-99a    0 7.515 
EAM392 r_miR-352      0 7.476 
EAM255 hmr_miR-22     0 7.465 
EAM249 hmr_miR-214    0 7.338 
EAM160 hmr_miR-26b    0 7.313 
EAM133 hmr_miR-324-5p 0 7.266 
EAM238 hm_miR-1       0 7.259 
EAM179 hmr_let-7d     0 7.235 
EAM339 hmr_miR-99b    0 7.225 
EAM185 hmr_miR-103    0 7.047 
EAM168 hmr_let-7e     0 7.034 
EAM200 hmr_miR-133a   0 6.959 
EAM278 hmr_miR-98     0 6.952 
EAM333 hmr_miR-32     0 6.951 
EAM291 hmr_miR-185    0 6.910 
EAM187 hmr_miR-107    0 6.879 
EAM263 hmr_miR-26a    0 6.818 
EAM261 hmr_miR-23b    0 6.814 
EAM371 hmr_miR-342    0 6.743 
EAM330 hmr_miR-30a-5p 0 6.717 
EAM280 hmr_miR-30a-3p 0 6.662 
EAM233 hmr_miR-196a   0 6.630 
EAM292 hmr_miR-186    0 6.602 
EAM115 hmr_miR-16     0 6.558 
EAM272 hmr_miR-30d    0 6.516 
EAM367 hmr_miR-338    0 6.428 
EAM379 r_miR-129*     0 6.323 
EAM193 hmr_miR-125a   0 6.222 
EAM273 hmr_miR-33     0 6.209 
EAM223 hmr_miR-15b    0 6.148 
EAM105 hmr_miR-125b   0 6.111 
EAM385 hmr_miR-335    0 6.011 
EAM237 hmr_miR-19b    0 5.981 
EAM320 hm_miR-189     0 5.938 
EAM262 hmr_miR-24     0 5.909 
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EAM240 hmr_miR-20     0 5.908 
EAM260 hmr_miR-23a    0 5.901 
EAM297 hmr_miR-193    0 5.856 
EAM236 hmr_miR-19a    0 5.789 
EAM264 hmr_miR-27b    0 5.780 
EAM205 hmr_miR-138    0 5.721 
EAM234 hmr_miR-199a   0 5.718 
EAM207 hmr_miR-140    0 5.561 
EAM217 hmr_miR-150    0 5.531 
EAM235 h_miR-199b     0 5.516 
EAM190 hr_miR-10b     0 5.511 
EAM282 m_miR-199b     0 5.483 
EAM335 h_miR-34b      0 5.315 
EAM288 m_miR-10b      0 5.291 
EAM275 hmr_miR-34a    0 5.287 
EAM195 hmr_miR-128b   0 5.253 
EAM328 hmr_miR-301    0 5.203 
EAM365 hmr_miR-331    0 5.191 
EAM131 hmr_miR-92     0 5.155 
EAM215 hmr_miR-148b   0 5.091 
EAM325 hmr_miR-27a    0 5.090 
EAM279 hmr_miR-29c    0 5.025 
EAM369 hmr_miR-340    0 4.959 
EAM354 m_miR-297      0 4.953 
EAM119 hmr_miR-29b    0 4.937 
EAM210 hmr_miR-143    0 4.908 
EAM361 hmr_miR-326    0 4.790 
EAM324 hmr_miR-25     0 4.764 
EAM226 hmr_miR-181a   0 4.742 
EAM343 mr_miR-151     0 4.740 
EAM228 hmr_miR-181c   0 4.675 
EAM366 mr_miR-337     0 4.661 
EAM349 mr_miR-292-3p  0 4.652 
EAM189 hmr_miR-10a    0 4.494 
EAM355 mr_miR-298     0 4.446 
EAM318 h_miR-17-3p    0 4.324 
EAM387 r_miR-343      0 4.140 
EAM363 mr_miR-329     0 4.118 
EAM268 hmr_miR-29a    0 4.044 
EAM175 hmr_miR-320    0 3.875 
EAM212 hmr_miR-145    0 3.869 
EAM378 mr_miR-7b      0 3.853 
EAM281 mr_miR-217     0 3.670 
EAM307 m_miR-202      0 3.625 
EAM209 hmr_miR-142-5p 0 3.594 
EAM163 hmr_miR-142-3p 0 3.545 
EAM384 r_miR-333      0 3.410 
EAM362 hmr_miR-328    0 3.356 



MicroRNA Expression Profiles Classify Human Cancers  Manuscript #2005-02-01298 

 29

EAM329 hm_miR-302a    0 3.348 
EAM368 hmr_miR-339    0 3.007 
EAM351 m_miR-293      0 2.852 
EAM153 hmr_let-7a     0 2.818 
EAM360 mr_miR-325     0 2.753 
EAM145 hmr_let-7c     0 2.393 
EAM348 mr_miR-291-5p  0 2.092 
EAM298 hmr_miR-194    0 2.068 
EAM250 h_miR-215      0 1.746 
EAM229 hm_miR-182     0.005 -4.074 
EAM224 hmr_miR-17-5p  0.005 4.875 
EAM341 m_miR-106a     0.005 4.185 
EAM242 hmr_miR-204    0.005 3.457 
EAM295 hmr_miR-190    0.005 3.186 
EAM353 m_miR-295      0.005 2.916 
EAM246 h_miR-211      0.005 2.663 
EAM248 hmr_miR-213    0.01 3.369 
EAM186 h_miR-106a     0.01 4.650 
EAM137 hmr_miR-132    0.01 3.388 
EAM258 hmr_miR-222    0.015 4.257 
EAM230 hmr_miR-183    0.02 -3.977 
EAM364 mr_miR-330     0.02 3.982 
EAM206 hmr_miR-139    0.02 3.761 
EAM327 hmr_miR-299    0.025 2.353 
EAM232 hmr_miR-192    0.04 1.065 
EAM257 hmr_miR-221    0.04 4.321 
EAM216 hm_miR-149     0.04 3.711 
 

These 131 markers were used without modification to predict the 12 mouse lung 

samples using the k-nearest neighbour algorithm. Each mouse sample was predicted 

separately, using log2 transformed mouse and human expression data. The tumor/normal 

phenotype prediction of a mouse sample was based on the majority type of the k nearest 

human samples using the chosen metric in the selected feature space. Since the 

tumor/normal distinction was observed at the raw miRNA expression levels, we decided 

to use Euclidean distance to measure the distances between samples. Thus, we performed 

kNN with the Euclidean distance measure and k=3, resulting in 100% accuracy. The 

detailed prediction results are available in Supplementary Table 3. Similar classification 
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results were obtained with other kNN parameters, with the exception of one mouse tumor 

T_MLUNG_5 (3rd column from right in Fig. 3b). This sample was occasionally 

classified as normal, for example, when using cosine distance measure (k=3). It should be 

pointed out that cosine distance captures less an overall shift in expression levels 

compared to Euclidean distance. It rather focuses on comparing the relationships among 

the different miRNAs So it appears that the same miRNA data capture different 

information with different distance metrics; Pearson correlation captures information 

about the lineage (as seen in clustering results), and Euclidean distance captures the 

normal/tumor distinction.   

  

Differentiation of HL-60 cells 

One hypothesis for the global decrease of miRNA expression in tumors (Fig. 2a, 

Fig. 3a,b) is that many miRNAs are upregulated during differentiation. We examined an 

in vitro differentiation system, the differentiation of HL-60 acute myeloblastic leukemia 

cells. HL-60 cells differentiate with increasing neutrophil characteristics upon treatment 

with all-trans retinoic acid (ATRA) during a course of 5 days 12. We found 59 miRNAs 

commonly expressed (see Supplementary Methods for the definition of “expressed”) in 

three independent experiments of HL-60 cells with or without ATRA treatment. A list of 

these 59 miRNAs is shown below. A heatmap is shown in Fig. 3c, reflecting averages of 

successfully profiled same condition samples. Results indicate increased expression of 

many miRNAs after 5 days of ATRA-induced differentiation (5d+). Since HL-60 is a 

cancerous cell line, this result supports the hypothesis that the global miRNA 

downregulation in cancer is related to differentiation. Whether or not the observed global 



MicroRNA Expression Profiles Classify Human Cancers  Manuscript #2005-02-01298 

 31

miRNA expression change is associated with certain windows of differentiation needs 

further investigation. 

Table: 59 miRNAs Detected in HL-60 Cells 

Probe miRNA 
EAM103 Hmr_miR-124a 
EAM111 Hm_let-7g 
EAM115 Hmr_miR-16 
EAM119 Hmr_miR-29b 
EAM131 Hmr_miR-92 
EAM145 Hmr_let-7c 
EAM270 hmr_miR-30b 
EAM163 hmr_miR-142-3p
EAM186 h_miR-106a 
EAM209 hmr_miR-142-5p
EAM223 hmr_miR-15b 
EAM224 hmr_miR-17-5p 
EAM226 hmr_miR-181a 
EAM227 hmr_miR-181b 
EAM236 hmr_miR-19a 
EAM257 hmr_miR-221 
EAM258 hmr_miR-222 
EAM259 hmr_miR-223 
EAM273 hmr_miR-33 
EAM297 hmr_miR-193 
EAM282 m_miR-199b 
EAM279 hmr_miR-29c 
EAM278 hmr_miR-98 
EAM272 hmr_miR-30d 
EAM264 hmr_miR-27b 
EAM263 hmr_miR-26a 
EAM262 hmr_miR-24 
EAM261 hmr_miR-23b 
EAM260 hmr_miR-23a 
EAM244 hmr_miR-21 
EAM240 hmr_miR-20 
EAM237 hmr_miR-19b 
EAM228 hmr_miR-181c 
EAM222 hm_miR-15a 
EAM219 hmr_miR-153 
EAM218 hmr_miR-152 
EAM206 hmr_miR-139 
EAM193 hmr_miR-125a 
EAM187 hmr_miR-107 
EAM185 hmr_miR-103 
EAM181 hmr_let-7f 
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EAM179 hmr_let-7d 
EAM175 hmr_miR-320 
EAM160 hmr_miR-26b 
EAM153 hmr_let-7a 
EAM147 hmr_let-7b 
EAM311 hmr_miR-101 
EAM313 hmr_miR-106b 
EAM318 h_miR-17-3p 
EAM324 hmr_miR-25 
EAM329 hm_miR-302a 
EAM331 hmr_miR-30e 
EAM337 hmr_miR-93 
EAM341 m_miR-106a 
EAM352 m_miR-294 
EAM364 mr_miR-330 
EAM368 hmr_miR-339 
EAM380 r_miR-140* 
EAM392 r_miR-352 

 
 

Erythroid differentiation of primary hematopoietic cells in vitro 

We profiled the expression of miRNAs during erythroid differentiation in vitro to 

ask whether the increase in miRNA expression observed in the differentiation of HL-60 

cells also occurs in primary cells.  The accessibility of normal hematopoietic progenitor 

cells and the ability to recapitulate erythropoiesis in vitro provide a model to study 

normal differentiation. We purified CD34+ hematopoietic progenitor cells from umbilical 

cord blood. Erythroid differentiation was induced in vitro using a two phase liquid culture 

system.  The state of differentiation of cultured cells was monitored every other day by 

evaluating expression of CD71 and glycophorin A (Gly-A) (Supplementary Fig. 7b).  

CD71 expression increases early in erythroid differentiation and gradually decreases in 

terminal erythroid differentiation.  Gly-A expression increases later in erythropoiesis and 

remains elevated through terminal differentiation.  As in HL60 cells, the expression of 

many miRNAs increased during differentiation (Supplementary Figure 7c).  Unlike HL-
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60 cells, the erythroid cells continued to proliferate at the time points when miRNA 

expression increased (Supplementary Figure 7a).  This suggests that proliferation itself, 

which is often integrally linked to differentiation, cannot account completely for the 

increased miRNA expression during differentiation. 

 

Analyzing tissue samples using an mRNA proliferation signature 

It is conceivable that differences in cellular proliferation, often integrally linked to 

differentiation, may contribute to the global miRNA signals. We asked whether the 

miRNA global expression differences among samples are merely a consequence of their 

differences in proliferation rates. To estimate the proliferation rates in tissue samples, we 

assembled a consensus mRNA signature of proliferation, reported to positively correlate 

with proliferation or mitotic index in breast tumors, lymphomas and HeLa cells 13-15. The 

table below summarizes this list.  

We first asked whether the mRNA proliferation signature reflects proliferation 

rates in our samples. Indeed, we noticed that the mean expression of these mRNAs is 

higher in tumors than normal tissues (Supplementary Fig. 8), reflecting faster 

proliferation rates in tumor samples.  

Next, we examined in the tumor samples the expression of the mRNA 

proliferation signature. We focused on lung and breast, two tissues that we have 

sufficient numbers of poorly differentiated tumors and more differentiated tumors. It is 

important to point out that poorly differentiated tumors have globally lower miRNA 

expression than more differentiated tumors. However, we did not observe any difference 

in the mRNA proliferation signature between these two categories of samples 
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(Supplementary Fig. 8). This result also suggests that the global miRNA expression is 

unlikely to be solely dependent on proliferation rates.  

 

Table: mRNAs used to estimate proliferation rates 

Chip Probe Set ID Gene Title 
Hu6800 AB003698_at CDC7 cell division cycle 7 (S. cerevisiae) 
Hu6800 D00596_at thymidylate synthetase 
Hu6800 D14134_at RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae) 

Hu6800 D21063_at 
MCM2 minichromosome maintenance deficient 2, mitotin (S. 
cerevisiae) 

Hu6800 D38073_at 
MCM3 minichromosome maintenance deficient 3 (S. 
cerevisiae) 

Hu6800 D38550_at E2F transcription factor 3 

Hu6800 D84557_at 
MCM6 minichromosome maintenance deficient 6 (MIS5 
homolog, S. pombe) (S. cerevisiae) 

Hu6800 J00139_s_at 
dihydrofolate reductase pseudogene 1 /// dihydrofolate 
reductase 

Hu6800 J04088_at topoisomerase (DNA) II alpha 170kDa 
Hu6800 J05614_at proliferating cell nuclear antigen 
Hu6800 L07493_at replication protein A3, 14kDa 

Hu6800 L25876_at 
cyclin-dependent kinase inhibitor 3 (CDK2-associated dual 
specificity phosphatase) 

Hu6800 L32866_at baculoviral IAP repeat-containing 5 (survivin) 
Hu6800 L47276_s_at topoisomerase (DNA) II alpha 170kDa 
Hu6800 M15796_at proliferating cell nuclear antigen 
Hu6800 M25753_at cyclin B1 
Hu6800 M34065_at cell division cycle 25C 
Hu6800 M74093_at cyclin E1 
Hu6800 M87339_at replication factor C (activator 1) 4, 37kDa 
Hu6800 M94362_at lamin B2 
Hu6800 S49592_s_at E2F transcription factor 1 
Hu6800 S78187_at cell division cycle 25B 
Hu6800 U04810_at trophinin associated protein (tastin) 
Hu6800 U05340_at CDC20 cell division cycle 20 homolog (S. cerevisiae) 
Hu6800 U14518_at centromere protein A, 17kDa 
Hu6800 U20979_at chromatin assembly factor 1, subunit A (p150) 
Hu6800 U22398_at cyclin-dependent kinase inhibitor 1C (p57, Kip2) 

Hu6800 U26727_at 
cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits 
CDK4) 

Hu6800 U28386_at karyopherin alpha 2 (RAG cohort 1, importin alpha 1) 
Hu6800 U30872_at centromere protein F, 350/400ka (mitosin) 
Hu6800 U37022_rna1_at cyclin-dependent kinase 4 
Hu6800 U47677_at E2F transcription factor 1 

Hu6800 U56816_at 
membrane-associated tyrosine- and threonine-specific cdc2-
inhibitory kinase 
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Hu6800 U65410_at MAD2 mitotic arrest deficient-like 1 (yeast) 
Hu6800 U74612_at forkhead box M1 
Hu6800 U77949_at CDC6 cell division cycle 6 homolog (S. cerevisiae) 
Hu6800 X05360_at cell division cycle 2, G1 to S and G2 to M 
Hu6800 X13293_at v-myb myeloblastosis viral oncogene homolog (avian)-like 2 
Hu6800 X51688_at cyclin A2 
Hu6800 X54942_at CDC28 protein kinase regulatory subunit 2 
Hu6800 X59543_at ribonucleotide reductase M1 polypeptide 
Hu6800 X59618_at ribonucleotide reductase M2 polypeptide 

Hu6800 X62153_s_at 
MCM3 minichromosome maintenance deficient 3 (S. 
cerevisiae) 

Hu6800 X65550_at antigen identified by monoclonal antibody Ki-67 
Hu6800 X74330_at primase, polypeptide 1, 49kDa 

Hu6800 X74794_at 
MCM4 minichromosome maintenance deficient 4 (S. 
cerevisiae) 

Hu6800 X74795_at 
MCM5 minichromosome maintenance deficient 5, cell division 
cycle 46 (S. cerevisiae) 

Hu6800 X87843_at menage a trois 1 (CAK assembly factor) 
Hu6800 X89398_cds2_at uracil-DNA glycosylase 
Hu6800 X95406_at cyclin E1 
Hu6800 X97795_at RAD54-like (S. cerevisiae) 
Hu6800 Z15005_at centromere protein E, 312kDa 
Hu6800 Z29066_s_at NIMA (never in mitosis gene a)-related kinase 2 
Hu6800 Z29077_xpt1_at cell division cycle 25C 
Hu6800 Z36714_at cyclin F 
Hu35KsubA AA436304_at RAN, member RAS oncogene family 
Hu35KsubA AF004709_at mitogen-activated protein kinase 13 
Hu35KsubA M96577_s_at E2F transcription factor 1 
Hu35KsubA RC_AA599859_at Cyclin B1 
Hu35KsubA RC_AA620553_s_at flap structure-specific endonuclease 1 
Hu35KsubA U75285_rna1_at baculoviral IAP repeat-containing 5 (survivin) 
Hu35KsubA U78310_at pescadillo homolog 1, containing BRCT domain (zebrafish) 
Hu35KsubA W28391_at proliferation-associated 2G4, 38kDa 

Hu35KsubA X74794_at 
MCM4 minichromosome maintenance deficient 4 (S. 
cerevisiae) 

Hu35KsubA Z68092_s_at cell division cycle 25B 
 

 

RT-PCR analyses of genes involved in miRNA machinery 

 One possible mechanism of the observed global miRNA expression difference 

between normal samples and tumors is changes in expression levels of miRNA 

processing enzymes. In lung cancer, Dicer levels were reported to correlate with 
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prognosis 16. We decided to examine Dicer1, Drosha, DGCR8 and Argonaute 2 (Ago2), 

which are critical in miRNA processing 17. Lacking probe sets representing these genes in 

our mRNA data, we used quantitative RT-PCR and analyzed 79 samples (32 normal 

samples and 47 tumors, covering 8 tissues, including colon, breast, uterus, lung, kidney, 

pancreas, prostate and bladder). We normalized the quantitative PCR data with 18S 

rRNA levels. We performed Student’s t-test (two-tail, unequal variance) for 

normal/tumor phenotypes on all samples examined (P = 0.3 for Dicer1, P = 0.11 for 

Drosha, P = 0.0011 for DGCR8, P = 0.0138 for Ago2). DGCR8 and Ago2 have 

significant nominal p-values under the above test. However, the fold differences of 

DGCR8 and Ago2 are small between tumors and normal samples (tumor samples have 

higher mean threshold cycle (Ct) values for these two genes; the mean Ct differences 

between normal and tumor samples are: 0.776 for DGCR8 and 0.798 for Ago2, 

corresponding to 1.7-fold and 1.5-fold absolute level differences respectively, after 

correction for PCR amplification efficiency). Whether or not the observed weak 

decreases on the transcript level may account for the differences in miRNA expression 

needs further investigation. It is also important to note that these results do not exclude 

the possibility that these miRNA machinery genes are involved in regulating 

tumor/normal miRNA expression in certain cancer types, or are regulated on the protein 

and activity levels. 

Analyses of poorly differentiated tumors 

We first set out to determine whether poorly differentiated tumors show a globally 

weaker miRNA expression than tumor samples in the miGCM collection, which 

represent more differentiated states. To this end, we made a comparison of poorly 
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differentiated tumors to more differentiated tumors of the corresponding tissue types. The 

analysis was performed on 180 features, after the data were filtered to eliminate non-

expressing miRNAs on the 55 samples which belong to tissue types that have both more-

differentiated and poorly-differentiated samples (see the hierarchical clustering section in 

Supplementary Methods for data filtration). Supplementary Fig. 5 shows that poorly 

differentiated tumors indeed have globally lower miRNA expression. Out of the 180 

features, 95 miRNAs display lower mean expression levels in poorly differentiated 

tumors (p<0.05 with a variance-thresholded t-test).  

We used PNN for prediction of tissue origin of poorly differentiated tumors. PNN 

is a probability based prediction algorithm and can be considered as a smooth version of 

kNN. For a multi-class prediction, PNN avoids the ambiguity often encountered with 

kNN, when multiple training classes are equally presented in the k nearest neighbours of 

a test sample. For a two-class classification problem, PNN assigns a probability for a test 

sample to be classified into one of the two classes. The contribution of each training 

sample to the classification of a test sample is related to their distance and follows the 

Gaussian distribution: the closer the test sample, the larger the contribution. The 

probability for a test sample to belong to a certain class is the total contribution from 

every training sample belonging to that class, divided by the total contributions of all 

training samples (see Supplementary Methods for more details).  

For the prediction of poorly differentiated tumors, the training sample set consists 

of 68 tumor samples with both miRNA and mRNA profiling data, covering 11 tissue 

types. The test set contains 17 poorly differentiated tumors. A table below summarizes 

the information on the 17 poorly differentiated tumors. To solve this multi-class 
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prediction problem, we broke down the task into 11 two-class predictions. Each two-class 

prediction assigns a probability for a test sample to belong to a certain tissue-type vs. the 

rest of the tissue-types (one vs. the rest, OVR), for example, colon vs. non-colon. After 

performing OVR classifications for all 11 tissues, the one tissue-type that receives the 

highest probability marks the predicted tissue type. The prediction results are summarized 

in supplementary Table 4.  

 

Table: Information on Poorly Differentiated Tumor Samples 

Sample Name 

Sample of Primary 
or Metastatic 
Origin Primary Site Metastatic  Site 

PDT_BRST_1 Primary Breast  
PDT_BRST_2 Primary Breast  
PDT_BRST_3 Primary Breast  
PDT_BRST_4 Primary Breast  

PDT_BRST_5 Metastatic Breast 
Lymph node 
/supraclavic 

PDT_COLON_1 Primary Colon  
PDT_LBL_1 Primary Lymph node Groin 
PDT_LUNG_1 Metastatic Lung Kidney 
PDT_LUNG_2 Primary Lung  
PDT_LUNG_3 Primary Lung  
PDT_LUNG_4 Primary Lung  
PDT_LUNG_5 Metastatic Lung Adrenal 
PDT_LUNG_6 Primary Lung  
PDT_LUNG_7 Primary Lung  
PDT_LUNG_8 Primary Lung  
PDT_OVARY_1 Primary Ovary  
PDT_OVARY_2 Metastatic Ovary Omentum 
PDT_OVARY_3 Primary Ovary  
PDT_STOM_1 Primary Stomach / GE_Jct  
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