Supplementary Notes

MicroRNA Expression Profiles Classify Human Cancers

Jun Lu, Gad Getz, Eric Miska, Ezequiel Alvarez-Saavedra, Justin Lamb, David Peck, Alejandro Sweet-Cordero, Benjamin L. Ebert, Raymond H. Mak, Adolfo A. Ferrando, James R. Downing, Tyler Jacks, H. Robert Horvitz and Todd R. Golub

Contents

Supplementary Figure Legends	2
Supplementary Methods	7
Cell culture	7
Glass-slide detection of miRNAs	8
Northern blot analysis	9
Quantitative RT-PCR	9
Data preprocessing and quality control	9
Hierarchical clustering	11
k-Nearest Neighbor (kNN) prediction	11
Probabilistic Neural Network (PNN) prediction	12
P-value calculation for the number of correct classifications	14
Supplementary Data	15
Development of a bead-based miRNA profiling platform	15
Hierarchical clustering of multiple cancer and normal samples	18
Comparison of miRNA and mRNA clustering in regard to GI samples	19
Normal/tumor classifier and kNN prediction of mouse lung samples	25
Differentiation of HL-60 cells	30
Erythroid differentiation of primary hematopoietic cells in vitro	32
Analyzing tissue samples using an mRNA proliferation signature	33
RT-PCR analyses of genes involved in miRNA machinery	35
Analyses of poorly differentiated tumors	36
Supplementary References	39

Online Information

Additional information about the paper and a frequently-asked-questions (FAQ)

page are available at http://www.broad.mit.edu/cancer/pub/miGCM .

Supplementary Figure Legends

Supplementary Figure 1 Schematics of target preparation and bead detection of miRNAs. (Left panel) 18 to 26-nucleotide (nt) small RNAs were purified by denaturing PAGE (polyacrylamide gel electrophoresis) from total RNAs extracted from tissues or cells. Small RNAs underwent two steps of adaptor ligation utilizing both the 5'-phosphate and 3'-hydroxl groups, each followed by a denaturing purification. Ligation products were reverse-transcribed (RT) and PCR amplified using a common set of primers, with biotinylation on the sense primer. (Right panel) Denatured targets were hybridized to beads coupled with capture probes for miRNAs. After binding to streptavidin-phycoerythrin (SAPE), the beads went through a flow cytometer that has two lasers and is capable of detecting both the bead identity and fluorescence intensity on each bead.

Supplementary Figure 2 Specificity and accuracy of the bead-based miRNA detection platform, probe similarity (for Fig. 1). Eleven synthetic oligonucleotides corresponding to human *let-7* family of miRNAs or mutants were PCR-labelled. Each of the labelled targets was split and hybridized separately on the bead platform and on a glass microarray. The synthetic targets are indicated on the horizontal axis, and the capture probes are indicated on the vertical axis. The similarity of the capture probes are measured by the differences in nucleotides (nt) and indicated by shades of blue.

Supplementary Figure 3 Noise and linearity of bead detection of miRNAs. (a) The noise of target preparation and bead detection was analyzed. Multiple analyses of the same RNA samples were performed. Expression data were $\log_{2^{-1}}$ transformed after thresholding at 1 to avoid negative numbers. The standard deviation (std) of each miRNA was plotted against the mean of that miRNA. Data were generated from independent labeling reactions and detections of five replicates of MCF-7, four replicates of PC-3, three replicates of HEL, three replicates of TF-1 and three replicates of 293 cell RNAs. Note that most miRNAs have a standard deviation below 0.75 when their mean is above 5 (in \log_2 scale). (b) Linearity of target preparation and bead detection. miRNAs were labeled and profiled from HEL cell total RNA with different starting amounts (10 µg, 5 µg, 2 µg and 0.5 µg, respectively). Data are averages of duplicate determinations, measured in median fluorescence intensity (MFI). Each line connects the readings of one miRNA with different amounts of starting material.

Supplementary Figure 4 Unsupervised analysis of miRNA expression data. miRNA profiling data of 218 samples covering multiple tissues and cancers were filtered, and centred and normalized for each feature. The data were then subjected to hierarchical clustering on both the samples (horizontally oriented) and the features (vertically oriented, with probe names on the left), with averagelinkage and Pearson correlation as a similarity measure. Sample names (staggered) are indicated on the top and miRNA names on the left. Tissue types and malignancy status (MAL; N for normal, T for tumor and TCL for tumor cell

line) are represented by colored bars. Samples that belong to the epithelial origin (EP) or derived from the gastrointestinal tract (GI) are also annotated below the dendrogram. STOM: stomach; PAN: pancreas; KID: kidney; PROST: prostate; UT: uterus; MESO: mesothelioma; BRST (breast); FCC: follicular lymphoma; MF: mycosis fungoides; COLON: colon; LVR: liver; BLDR: bladder; OVARY: ovary; Lung: lung; MELA: melanoma; BRAIN: brain; TALL: T-cell ALL; BALL: B-cell ALL; LBL: diffused large-B cell lymphoma; AML: acute myelogenous leukaemia.

Supplementary Figure 5 Comparison of miRNA expression levels of poorly differentiated and more-differentiated tumors. Poorly differentiated tumors (PD) with primary origins from colon, ovary, lung, breast (BRST) or lymphnode (LBL) were compared to more-differentiated tumors (non-PD) of the corresponding tissue types in the miGCM collection. After filtering out non-detectible miRNAs, the remaining 173 features were centered and normalized for each tissue type separately to a mean of 0 and a standard deviation of 1. A heatmap of the data is shown. Samples with the same tissue type and PD status were sorted according to total miRNA expression readings, with higher expressing samples on the left. Features were sorted according to the variance-thresholded t-test score.

Supplementary Figure 6 Hierarchical clustering analyses of miRNA data and mRNA data. For 89 epithelial samples that had successful expression data of both miRNAs and mRNAs, hierarchical clustering was performed using average linkage and correlation similarity, after gene filtering. Filtering of miRNA data

eliminates genes that do not have expression values above a miminum threshold in any sample (see Supplementary Methods for details). Three different filtering methods were used for mRNA data. The first method (mRNA filt-1) uses the same criteria as used for miRNA data, resulting in 14546 genes. The second method (mRNA filt-2) employed a variation filter as described ¹, and resulted in 6621 genes. The third method (mRNA filt-3) focused on transcription factors that passed the above variation filter, ending with 220 genes. Samples of gastrointestinal tract (GI) or non-GI origins are indicated. Tissue type (TT) and malignancy status (MAL) for normal (N) or tumor (T) samples are also indicated. Note that the GI-derived samples largely cluster together in the space of miRNA expression, but not by mRNA expression. Abbreviations: PAN: pancreas; KID: kidney; PROST: prostate; UT: uterus; MESO: mesothelioma; BRST: breast; COLON: colon; BLDR: bladder; OVARY: ovary; Lung: lung; MELA: melanoma.

Supplementary Figure 7 *In vitro* erythroid differentiation. Purified CD34⁺ cells from human umbilical cord blood were induced to differentiate along the erythroid lineage. **(a)** Total cell counts were determined every two days. Data are averages of cell counts from a triplicate experiment and error bars represent standard deviations. **(b)** Markers of erythroid differentiation, CD71 and Glycophorin A (GlyA), were determined using flow cytometry. Percentages of cells with negative (-), low, or positive (+) marker staining are plotted. **(c)** miRNA expression profiles of differentiating erythrocytes were determined on days (d) indicated after induction. Data were log₂-transformed, averaged among successfully profiled

same-day samples and normalized to a mean of 0 and a standard deviation of 1 for each miRNA. Data were then filtered to eliminate miRNAs that do not have expression values higher than a minimum cut-off (7.25 on log₂ scale) in any sample. A heatmap of miRNA expression is shown, with red color indicating higher expression and blue for lower expression. Data shown are from a representative differentiation experiment of two performed.

Supplementary Figure 8 Comparing miRNA expression levels with an mRNA signature of proliferation. A consensus set of mRNA transcripts that positively correlate with proliferation rate was assembled based on published data (see Supplementary Data). Data for miRNA and mRNA expression in lung and breast (BRST) were centered and normalized for each gene, bringing the mean to 0 and the standard deviation to 1. The mean expression of mRNAs correlated with proliferation (on the horizontal axis) was plotted against the mean expression of miRNA markers for tumor/normal distinction (on the vertical axis). Normal samples, poorly differentiated (diff.) tumors and more differentiated tumors are represented by round, triangle and square dots, respectively. Note that the mRNA proliferation signature distinguishes normal samples from tumors, reflecting faster proliferation rates in cancer specimens; however, it does not distinguish between poorly differentiated tumors and more differentiated tumors, even though the miRNA expression levels in the latter two categories are different.

Supplementary Methods

Cell culture

HEL, TF-1, PC-3, MCF-7, HL-60, SKMEL-5, 293 and K562 cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA), and cultured according to ATCC instructions. All T-cell ALL cell lines were cultured in RPMI medium supplemented with 10% fetal bovine serum. CCRF-CEM and LOUCY cells were obtained from ATCC. ALL-SIL, HPB-ALL, PEER, TALL1, P12-ICHIKAWA cells were obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). SUPT11 cells were a kind gift of Dr. Michael Cleary at Stanford University.

Umbilical cord blood was obtained under an IRB approved protocol from the Brigham and Women's Hospital. Light-density mononuclear cells were separated by Ficoll-Hypaque centrifugation, and CD34⁺ cells (85-90% purity) were enriched using Midi-MACS columns (Miltenyi Biotec, Auburn, CA). Erythroid differentiation of the CD34⁺ cells was induced in two stages in liquid culture ². For the first seven days, cells were cultured in Serum Free Expansion Medium (SFEM, Stem Cell Technologies, Tukwila, WA) supplemented with penicillin/streptomycin, glutamine, 100 ng/mL stem cell factor (SCF), 10 ng/mL interleukin-3 (IL-3), 1 μ M dexamethasone (Sigma), 40 μ g/ml lipids (Sigma), and 3 IU/ml erythropoietin (Epo). After 7 days, cells were cultured in the same medium without dexamethasone and supplemented with 10 IU/ml Epo. For flow cytometry analyses, approximately 1 to 5 x 10⁵ cells were labeled with a

phycoerythrin-conjugated antibody against glycophorin-A (CD235a, Clone GA-R2, BD-Pharmingen, San Jose, CA) and a FITC-conjugated antibody against CD71 (Clone M-A712, BD-Pharmingen). Flow cytometry analyses were performed using a FACScan flow cytometer (Becton Dickinson).

Glass-slide detection of miRNAs

Glass slide microarrays were spotted oligonucleotide arrays and hybridized as described previously ³. Briefly, 5'-amino-modified oligonucleotide probes (the same ones as used on the bead platform) were printed onto amide-binding slides (CodeLink, Amersham Biosciences). Printing and hybridization were done following the slides manufacturer's protocols with the following modifications: oligonucleotide concentration for printing was 20 µM in 150 mM sodium phosphate, pH 8.5. Printing was done on a MicroGrid TAS II arrayer (BioRobotics) at 50% humidity. Labeled PCR product was resuspended in hybridization buffer (5X SSC, 0.1% SDS, 0.1 mg/ml salmon sperm DNA) and hybridized at 50°C for 10 hours. Microarray slides were scanned using an arrayWoRx^e biochip reader (Applied Precision) and primary data were analyzed using the Digital Genome System suite (Molecularware).

Northern blot analysis

Northern blot analyses were carried out as described ⁴. Total RNAs from cell lines were loaded at 10 μ g per lane. Blots were detected with DNA probes complementary for human miR-20, miR-181a, miR-15a, miR-16, miR-17-5p, miR-221, let-7a, and miR-21.

Quantitative RT-PCR

Reverse transcription (RT) reactions were carried out on 50 to 200 ng total RNA in 10 µl reaction volumes, using the TaqMan reverse transcription kit (Applied Biosystems, Foster City, CA) and random hexamers, following the manufacturer's protocol. RT products were diluted 5-fold in water and assayed using TaqMan Gene Expression Assays (Applied Biosystems) in triplicates, on an ABI PRISM 7900HT realtime PCR machine. Efficiency of PCR amplification was determined by 5 two-foldserial-diluted samples from HL-60 cDNA. The TaqMan Gene Expression Assays used are listed in the parentheses. (Dicer1: Hs00998566_m1; Ago2/EIF2C2: Hs00293044_m1; Drosha/RNase3L: Hs00203008_m1; DGCR8: Hs00256062_m1; and eukaryotic 18S rRNA endogenous control)

Data preprocessing and quality control

To eliminate bead-specific background, the reading of every bead for every sample was first processed by subtracting the average readings of that particular bead in the two-embedded mock-PCR samples in each plate. As stated in the Methods, every sample was assayed in three wells. Each of the three wells contained 94 probes (19 common probes and 75 unique ones). Out of the 19 common probes are the two prelabeling controls and the two post-labeling controls. Quality control was performed as part of the preprocessing by requiring that the reading from each control probe exceeds some minimal probe-specific threshold. These thresholds were determined by identifying a natural lower cutoff, i.e. a dip, in the distribution of each control probe. The cutoff values were chosen based on a set of samples in a pilot study. The lower post-control should be greater than 500 and the higher post-control must exceed 2450. The lower and higher pre-controls should exceed 1400 and 2000 respectively (after well-to-well scaling). In this study, about 70% of the samples passed the quality control. Note that the above specifications were used on version 1 of the platform. A similar preprocessing was performed on version 2 of the platform.

Preprocessing was done in four steps: (i) well-to-well scaling – the reading from each well were scaled such that the total of the two post-labeling controls, in that well, became 4500 (a median value based on a pilot study); (ii) sample scaling – the normalized readings were scaled such that total of the 6 pre-labeling controls in each sample reached 27,000 (a median value based on a pilot study); (iii) thresholding at 32 (see Supplementary Data); and (iv) log₂ transformation. All control probes, as well as a probe (EAM296) which had a high background in the absence of any prepared target, were removed before any further analysis. After eliminating these probes, 217 (255 for version 2 of the platform) features were left and these were used throughout the analysis.

Hierarchical clustering

miRNA expression data first underwent filtering. The purpose of this filtering is to remove features which have no detectable expression and thus are uninformative but may introduce noise to the clustering. A miRNA was regarded as "not expressed" or "not detectible", if in none of the samples, that particular miRNA has an expression value above a minimal cutoff. We applied a cutoff of 7.25 (after data were \log_2 -transformed). This cutoff value was determined based on noise analyses of target preparation and bead detection (see Supplementary Data Section and Supplementary Fig. 3a). In that experiment, the majority of features had a standard deviation below 0.75 when their mean was over 5 in log₂-transformed data. Thus we used a cutoff of 3 standard deviations above the minimal expression level (5+3x0.75=7.25). Any feature that is not expressed under this criterion was filtered out before clustering. Data were then centered and normalized for each feature, bringing the mean to 0 and the standard deviation to 1. This equalizes the contributions of all features. For hierarchical clustering, we used Pearson correlation as a similarity measure, and used the average-linkage algorithm ⁵ for both the samples and the features.

k-Nearest Neighbor (kNN) prediction

After feature filtration (described in the hierarchical clustering), marker selection was performed on 187 features. The variance-thresholded t-test score was used as a measure to score features. A minimal standard deviation of 0.75 was applied. Markers were searched among the filtered miRNAs. Nominal P-value was calculated for each feature, by permuting the class labels of the samples. In order to select features that best distinguish tumors from normal samples on all tissue types, i.e. taking into account the confounding tissue-type phenotype, restricted permutations were performed ⁶. In restricted permutations, one shuffles the tumor/normal labels only within each tissue type to get the distribution under the desired null hypothesis. To achieve accurate estimates for the p-values, 400 times the number of features (400x187=74,800) of iterations were performed. To correct for multiple-hypotheses testing, markers were selected requiring the Bonferroni-corrected P-values to be less than 0.05. *k*NN prediction was performed using the *k*NN module in the GenePattern software, with *k*=3 and a Euclidean distance measure (GenePattern at

http://www.broad.mit.edu/cancer/software/genepattern/index.html).

Probabilistic Neural Network (PNN) prediction

A two-class PNN ⁷ prediction was calculated based on the following class posterior probability:

$$P(c \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid c)P(c)}{\sum_{c'} P(\mathbf{x} \mid c')P(c')} = \frac{\frac{P(c)}{n_c} \sum_{i:\bar{y}_i \in c} \exp\left(-D(\mathbf{x}, \mathbf{y}_i)^2 / 2\sigma^2\right)}{\sum_{c'} \left[\frac{P(c')}{n_{c'}} \sum_{i:\bar{y}_i \in c'} \exp\left(-D(\mathbf{x}, \mathbf{y}_i)^2 / 2\sigma^2\right)\right]},$$

where **x** is the predicted sample and *c* is the class for which the posterior probability is calculated. The training set samples are \mathbf{y}_i , n_c is the number of samples of class *c* in the training set, and $D(\mathbf{x}, \mathbf{y}_i)$ is the distance between the predicted sample and training sample *i*. In our case, the sum in the denominator (of c') is over two class values, since we predict a sample either to belong or not to belong to a specific tissue-type. Note that the first step is derived using Bayes rule which allows to incorporate a prior probability for each class, P(c). We used a uniform prior over all 11 tissue-types which translated to 1/11 for being in a certain type and 10/11 for not being in that type. We did not use the tissue-type frequencies in the training set since they likely do not represent the frequencies of different tumors in the general population.

Multi-class prediction using PNN was achieved by breaking down the question into multiple one vs. the rest (OVR) predictions. To perform PNN OVR two-class classification, we built a model based on the training set. This model has two parameters: the number of features used, and σ (the standard deviation of the Gaussian kernel which is used to calculate the contribution of each training sample to the classification). The optimal parameters (for each OVR classifier) were selected using a leave-one-out crossvalidation procedure from all possible parameter-pairs in which the number of features ranges from 2 to 30 in steps of 2 and σ takes the values from 1 to 4 times the median nearest neighbor distance, in steps of 0.5 (a total number of 105 combinations). The best model was determined by (i) the fewest number of leave-one-out errors on the training set, which include both false-positive and false-negative errors with the same weight, and (ii) among all conditions with the same error rate, the parameters that gave rise to the maximal mean log-likelihood of the training set were selected. The mean log-likelihood is defined as $L[\{\mathbf{x}_i\}; M] = \frac{1}{\#\text{of training examples}} \sum_i \log(P_M(\mathbf{c}_i | \mathbf{x}_i))$ where c_i is the true class of sample \mathbf{x}_i and the probability is evaluated using the model *M*. The top n features were selected using the variance-thresholded t-test score in a balanced manner; n/2features with the top positive scores and n/2 features with most negative scores. The

cosine distance measure was used; $D(\mathbf{x}, \mathbf{v}_i) = 1$ -cosine $(\mathbf{x}, \mathbf{v}_i)$.

P-value calculation for the number of correct classifications

A Binomial distribution was used to calculate the probability to obtain at least the number of correct classifications (on the test set) as we observed. Assuming a random classifier would predict the tissue-type randomly with a uniform distribution over the 11 possible outcomes, the probability of a correct classification is 1/11. This is applicable to the PNN prediction, in which the background frequency of each tissue type was assumed to be 1/11. The p-value is, therefore, the tail of the Binomial distribution from the observed number of correct classifications, *s*, to the total number of samples in the test set, *n*:

P - value = $\sum_{t=s}^{n} {n \choose t} p^{t} (1-p)^{n-t}$ where p is one over the number of tissue-types (1/11, in

our case) and t is the number of correct classification which goes from the observed number, s, to the maximum of possible correct samples n.

Supplementary Data

Development of a bead-based miRNA profiling platform

Compared with glass-based microarrays, bead-based profiling solutions have the advantages of higher sample throughput and liquid phase hybridization kinetics, while having the disadvantage of lower feature throughput. For the genomic analysis of miRNA expression, this disadvantage is negligible because of the relative small number of identified miRNAs. Since new miRNAs are still being discovered, the flexibility and ease of these "liquid chips" to introduce new features is of particular value.

We developed a bead-based miRNA profiling platform, as detailed in the Methods section. Version 1 of this platform (used for most samples in this study) covers 164 human, 185 mouse, and 174 rat miRNAs, according to Rfam 5.0 miRNA registry database ^{8, 9} (<u>http://www.sanger.ac.uk/Software/Rfam/mirna/index.shtml</u>). Version 2 of this platform (used for the acute lymphoblastic leukemia study and the erythroid differentiation study) covers additional 24 human, 13 mouse and 2 rat miRNAs (refer to Supplementary Table 1 for details).

This profling platform is compatible in theory with any miRNA labeling method that labels the sense strand. For our study, we followed one described by Miska *et al.*³ that labels mature miRNAs through adaptor ligation, reverse-transcription and PCR amplification. We reasoned that the amplification step will allow future use of these labeled materials, which were from precious clinical samples. Defined amounts of synthetic artificial miRNAs were added into each sample of total RNAs as pre-labeling controls. This allows us to normalize the profiling data according to the starting amount of total RNA, using readings from capture probes for these synthetic miRNAs (see Methods for details). This contrasts the use of total feature intensity to normalize the readings of different samples; the hidden assumption of the latter is that the total miRNA expression is the same in all samples, which may not be true considering the small known number of miRNAs.

We analyzed the variation caused by labeling and detection using repetitive assays of the same RNA samples of a few cell lines originated from different tissues; these cell lines have different miRNA profiles. We plotted the standard deviation of each probe versus its means, after the data were log₂-transformed (Supplementary Fig. 3a). The variations are large for low means, and decrease and stabilize with increasing means. For most measured features with mean above 5 (32 before log₂-transformation), the standard deviation is below 0.75. This value of mean provides a good cutoff for a lower threshold of the data, which was thus used in this study.

We compared the data from expression profiles and northern blots on a panel of 7 cell lines; the same quantities of the same starting total RNAs were used for both analyses. We picked eight miRNAs that are expressed in any of these cell lines and that show differential expression according to the expression profiles, and probed them with northern blots. All eight display good concordance between the two assays (Fig. 1c), indicating that our profiling platform has good accuracy.

We next examined the linearity of profiling (both labeling and detection) by measuring a series of starting materials, covering 0.5 μ g to 10 μ g of total RNAs from HEL cells. Most miRNAs report good linearity up to 3500 median fluorescence intensity readings (after normalization with pre-labeling-controls, Supplementary Fig. 3b). Taken

together with the threshold level of 32, the profiling method has roughly 100-fold of dynamic range.

One common issue that affects hybridization-based analyses for miRNAs is the specificity of detection, since many miRNAs are closely-related on the sequence level. To assess the specificity of detection, we synthesized oligonucleotides corresponding to the reverse-transcription products of adaptor-ligated miRNAs, in this case the human *let-*7 family of miRNAs and a few artificial mutants. The sequences for these oligonucleotides, as well as the alignment of human *let-*7 miRNAs and mutant sequences, are listed below. They were then labeled through PCR using the same primer sets. This provides a collection of sequence-pairs that differ by one, two, or a few nucleotides (Supplementary Fig. 2 and the alignment below). Results are presented in the main text and in Fig. 1a,b.

Alignment of Human let-7 miRNAs and Mutant Sequences

UGAGGUAGUAG <mark>U</mark> UUGUACAGU	hsa-let-7g
UGAGGUAGUAC <mark>U</mark> UUCUACAGUUA	let-7-mut1
UGAGGUAGUAGGUUGUAUGGUU	hsa-let-7c
UGAGGUACUAGCUUGUAUGGUU	let-7-mut2
UGAGGUAGUAGGUUGU <mark>G</mark> UGGUU	hsa-let-7b
UGAGGUACUAGCUUGU <mark>G</mark> UGGUU	let-7-mut3
UGAGGUAGUAGGUUGUAUAGUU	hsa-let-7a
UGAGGUAG <mark>G</mark> AGGUUGUAUAGU	hsa-let-7e
AGAGGUAGUAGGUUGCAUAGU	hsa-let-7d
UGAGGUAGUAG <mark>A</mark> UUGUAUAGUU	hsa-let-7f
UGAGGUAGUAG <mark>U</mark> UUGU <mark>GCU</mark>	hsa-let-7i

Table: Oligonucleotide Sequences for Detection Specificity Experiment

miRNA or Mutant Name	Oligonucleotide Sequence (5' to 3')
hsa-let-7g	CTGGAATTCGCGGTTAAAACTGTACAAACTACTACCTCATTTAGTGAGGAATTCCGT

let-7-mut1	CTGGAATTCGCGGTTAAATAACTGTAGAAAGTACTACCTCATTTAGTGAGGAATTCCGT
hsa-let-7c	CTGGAATTCGCGGTTAAAAACCATACAACCTACTACCTCATTTAGTGAGGAATTCCGT
let-7-mut2	CTGGAATTCGCGGTTAAAAACCATACAAGCTAGTACCTCATTTAGTGAGGAATTCCGT
hsa-let-7b	CTGGAATTCGCGGTTAAAAACCACACAACCTACTACCTCATTTAGTGAGGAATTCCGT
let-7-mut3	CTGGAATTCGCGGTTAAAAACCACAAGCTAGTACCTCATTTAGTGAGGAATTCCGT
hsa-let-7a	CTGGAATTCGCGGTTAAAAACTATACAACCTACTACCTCATTTAGTGAGGAATTCCGT
hsa-let-7e	CTGGAATTCGCGGTTAAAACTATACAACCTCCTACCTCATTTAGTGAGGAATTCCGT
hsa-let-7d	CTGGAATTCGCGGTTAAAACTATGCAACCTACTACCTCTTTTAGTGAGGAATTCCGT
hsa-let-7f	CTGGAATTCGCGGTTAAAAACTATACAATCTACTACCTCATTTAGTGAGGAATTCCGT
hsa-let-7i	CTGGAATTCGCGGTTAAAAGCACAAACTACTACCTCATTTAGTGAGGAATTCCGT

Hierarchical clustering of multiple cancer and normal samples

We applied this miRNA profiling platform for 140 human cancer specimens, 46 normal human tissues, and various cell lines. The collection of samples covers more than ten tissues and cancer types. This collection was referred to as miGCM (for <u>miRNA</u> <u>Global Cancer Map</u>). We first examined the miRNA expression profiles to see whether we can detect previously reported tissue-restricted expression of miRNAs. Indeed, we observed tissue-restricted expression patterns. For example, miR-122a, a reported liver-specific miRNA ¹⁰, is exclusively expressed in the liver samples, whereas miR-124a, a brain-specific miRNA ¹⁰, is abundantly expressed in the brain samples.

We performed hierarchical clustering on this data set, as described in the Methods. Hierarchical clustering is an unsupervised analysis tool that captures internal relationship between the samples. It organizes the samples (or features) into a tree structure (a dendrogram) according to the similarity between the samples (or the features). Close pairs of samples (ones with similar expression profiles) will generally be connected in the dendrogram at an earlier phase, while samples with larger distances (with less similar expression profiles) will be connected at a later phase (details can be found in reference ¹¹). The detailed result of hierarchical clustering on both the samples and features using correlation metrics is presented in Fig. 2a and Supplementary Fig. 4.

Comparison of miRNA and mRNA clustering in regard to GI samples

After finding that the gastrointestinal tract samples were clustered together (main text and Fig. 2a), we asked whether or not this structure is similarly displayed by clustering in the mRNA space. We took 89 epithelial samples that have both successful mRNA and miRNA profiling data, and subjected them to hierarchical clustering. Both data underwent identical gene filtering, i.e. a lower threshold filter to eliminate genes that do not have expression values over 7.25 (on log₂ scale) in any sample, and underwent the same clustering procedure. This gene filtering resulted in 195 miRNAs and 14546 mRNAs. Data were presented in the main text, Fig. 2c and Supplementary Fig. 6. Results show that the mRNA clustering does not recover the coherence of GI samples, as identified in the miRNA expression space. Of note, the exact outcome of hierarchical clustering is dependent on the collection of samples present for analysis. Consequently, the cluster of the GI samples in miRNA clustering in Fig. 2c is slightly different from that of Fig. 2a, since the latter comprises of many more samples.

In order to test whether the lack of coherence of GI samples in the mRNA clustering is sensitive to the choice of genes that were used to represent each sample, we tested two additional gene filtering methods. First, we used a variation filter as was performed in Ramaswamy et al.¹ (lower threshold of 20, upper threshold of 16000, the maximum value is at least 5 fold greater than the minimum value, and the maximum

value is more than 500 greater than the minimum value), which yielded 6621 genes. Second, we examined only transcription factors, a set of gene regulators as are miRNAs. We took the genes that passed the above variation filter and that are also annotated with transcription factor activity in the Gene Ontology (www.geneontology.org, GO:0003700). This resulted in 220 transcription factors as listed in the table below. Similar to the minimum-expression filter on the mRNA data, these two gene selection methods yielded clustering by tissue types to a certain degree. However, none recovered the gut coherence (Supplementary Fig. 6). This indicated either that the miRNA space contains some different information from the mRNA space or that in the mRNA space, the gut signal is masked by other signals or noise. Importantly, a set of transcription factors did not mimic miRNAs in this test, suggesting the difference is not solely due to the gene regulator nature of miRNAs.

Chip	Probe Set ID	Gene Title
Hu6800	AB000468_at	ring finger protein 4
Hu6800	D43642_at	transcription factor-like 1
Hu6800	D83784_at	pleiomorphic adenoma gene-like 2
Hu6800	D86479_at	AE binding protein 1
Hu6800	D87673_at	heat shock transcription factor 4
		serum response factor (c-fos serum response element-
Hu6800	J03161_at	binding transcription factor)
Hu6800	J03827_at	nuclease sensitive element binding protein 1
Hu6800	L02785_at	solute carrier family 26, member 3
Hu6800	L11672_at	zinc finger protein 91 (HPF7, HTF10)
Hu6800	L11672_r_at	zinc finger protein 91 (HPF7, HTF10)
Hu6800	L13203_at	forkhead box 11
Hu6800	L13740_at	nuclear receptor subfamily 4, group A, member 1
Hu6800	L17131_rna1_at	high mobility group AT-hook 1
Hu6800	L20298_at	core-binding factor, beta subunit
Hu6800	L22342_at	SP110 nuclear body protein
Hu6800	L22454_at	nuclear respiratory factor 1
Hu6800	L40904_at	peroxisome proliferative activated receptor, gamma

Table: 220 mRNA genes with transcription factor activity annotation

Hu6800	M14328_s_at	enolase 1, (alpha)	
Hu6800	M16938_s_at	homeo box C6	
Hu6800	M19720_rna1_at	v-myc myelocytomatosis viral oncogene homolog 1, lung carcinoma derived (avian)	
Hu6800	M23263_at	androgen receptor (dihydrotestosterone receptor; testicular feminization; spinal and bulbar muscular atrophy; Kennedy disease)	
		thyroid hormone receptor, alpha (erythroblastic leukemia viral (v-erb-a) oncogene homolog, avian) /// nuclear	
Hu6800	M24900_at	receptor subfamily 1, group D, member 1	
Hu6800	M25269_at	ELK1, member of ETS oncogene family	
Hu6800	M31627_at	X-box binding protein 1	
Hu6800	M36542_s_at	POU domain, class 2, transcription factor 2	
Hu6800	M38258_at	retinoic acid receptor, gamma	
Hu6800	M64673_at	heat shock transcription factor 1	
Hu6800	M65214_s_at	transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)	
Hu6800	M68891_at	GATA binding protein 2	
Hu6800	M76732_s_at	msh homeo box homolog 1 (Drosophila)	
Hu6800	M77698_at	YY1 transcription factor	
Hu6800	M79462_at	promyelocytic leukemia	
Hu6800	M79463_s_at	promyelocytic leukemia	
Hu6800	M93650_at	paired box gene 6 (aniridia, keratitis)	
Hu6800	M95929_at	sideroflexin 3	
Hu6800	M97676_at	msh homeo box homolog 1 (Drosophila)	
Hu6800	M97935_s_at	signal transducer and activator of transcription 1, 91kDa	
Hu6800	M97936_at	signal transducer and activator of transcription 1, 91kDa	
Hu6800	M99701_at	transcription elongation factor A (SII)-like 1	
Hu6800	S81264_s_at	T-box 2	
Hu6800	U00968_at	sterol regulatory element binding transcription factor 1	
Hu6800	U11861_at	maternal G10 transcript	
Hu6800	U18018_at	ets variant gene 4 (E1A enhancer binding protein, E1AF)	
Hu6800	U20734_s_at	jun B proto-oncogene	
Hu6800	U28687_at	zinc finger protein 157 (HZF22)	
Hu6800	U29175_at	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4	
Hu6800	U35048_at	transforming growth factor beta 1 induced transcript 4	
Hu6800	U36922_at	forkhead box O1A (rhabdomyosarcoma)	
Hu6800	U39840_at	forkhead box A1	
Hu6800	U44755_at	small nuclear RNA activating complex, polypeptide 2, 45kDa	
Hu6800	U51003_s_at	distal-less homeo box 2	
Hu6800	U51127_at	interferon regulatory factor 5	
Hu6800	U53830_at	interferon regulatory factor 7	
Hu6800	U58681_at	neurogenic differentiation 2	
Hu6800	U63842_at	neurogenin 1	
		KH-type splicing regulatory protein (FUSE binding protein	
Hu6800	U69126_s_at	2)	
Hu6800	U72649_at	BTG family, member 2	
Hu6800	U73843_at	E74-like factor 3 (ets domain transcription factor, epithelial-	

		specific)	
Hu6800	U76388 at	nuclear receptor subfamily 5, group A, member 1	
Hu6800	U81599 at	homeo box B13	
Hu6800	U81600_at	paired related homeobox 2	
Hu6800	U82759_at	homeo box A9	
Hu6800	U85193_at	nuclear factor I/B	
		transcription factor AP-2 gamma (activating enhancer	
Hu6800	U85658_at	binding protein 2 gamma)	
Hu6800	U95040_at	tripartite motif-containing 28	
Hu6800	X03635_at	estrogen receptor 1	
Hu6800	X06614_at	retinoic acid receptor, alpha	
Hu6800	X12794_at	nuclear receptor subfamily 2, group F, member 6	
Hu6800	X13293_at	v-myb myeloblastosis viral oncogene homolog (avian)-like 2	
Hu6800	X13810_s_at	POU domain, class 2, transcription factor 2	
Hu6800	X16316_at	vav 1 oncogene	
Hu6800	X16665_at	homeo box B2	
Hu6800	X16706_at	FOS-like antigen 2	
Hu6800	X17360_rna1_at	homeo box D4	
Hu6800	X17651_at	myogenin (myogenic factor 4)	
Hu6800	X51345_at	jun B proto-oncogene	
Hu6800	X52541_at	early growth response 1	
	VEEOOE mod at	thyroid hormone receptor, alpha (erythroblastic leukemia	
Hu6800	X55005_ma1_at	Viral (V-erb-a) oncogene homolog, avian)	
Hu6800	X55037_S_at	GATA binding protein 3	
	X50001_S_al	Jun D proto-oncogene	
Hu6800	X58072_at	GATA binding protein 3	
	X61755 rpo1 c ot	bomoo box C5	
	X01755_ma1_5_at	nomeo box C5	
	X66070 ot	retinoid X receptor, beta	
1100000	ai	zinc finger protein 11b (KOX 2) /// zinc finger protein 33a	
Hu6800	X68688 rna1 s at	(KOX 31)	
Hu6800	X69699 at	paired box gene 8	
Hu6800	X70683 at	SRY (sex determining region Y)-box 4	
		thyroid hormone receptor, alpha (erythroblastic leukemia	
		viral (v-erb-a) oncogene homolog, avian) /// nuclear	
Hu6800	X72632_s_at	receptor subfamily 1, group D, member 1	
Hu6800	X78992_at	zinc finger protein 36, C3H type-like 2	
Hu6800	X85786_at	regulatory factor X, 5 (influences HLA class II expression)	
Hu6800	X90824_s_at	upstream transcription factor 2, c-fos interacting	
	V02006 mod of	myeloid/lymphoid or mixed-lineage leukemia (trithorax	
Hu6800	X93996_ma1_at	NAX binding protoin	
		INIAA binding protein	
	18_2_00001	Dr. 1-associated protein 1 (negative cofactor 2 alpha)	
	V09076 of	EEV/(ETS opposition formily)	
	711900 o ot	FEV (ETS oncogene family)	
	211099_S_at	POU domain, class 5, transcription factor 1	
	21/240 at 700051 mod a st		
	ZZZ951_mail_s_at		
HUDOUU	∠49825_s_at	nepatocyte nuclear factor 4, alpha	

Hu6800	Z50781_at	delta sleep inducing peptide, immunoreactor	
Hu6800	Z56281 at	interferon regulatory factor 3	
Hu35KsubA	AA010750_at	LAG1 longevity assurance homolog 2 (S. cerevisiae)	
Hu35KsubA	AA036900_at	FOS-like antigen 2	
Hu35KsubA	AA091017_at	nuclear factor of activated T-cells 5, tonicity-responsive	
Hu35KsubA	AA099501_at	p66 alpha	
Hu35KsubA	AA127183_s_at	serologically defined colon cancer antigen 33	
Hu35KsubA	AA157520_at	signal transducer and activator of transcription 5B	
Hu35KsubA	AA287840_at	Runt-related transcription factor 2	
Hu35KsubA	AA328684_at	SLC2A4 regulator	
Hu35KsubA	AA347664_at	lymphoid enhancer-binding factor 1	
Hu35KsubA	AA355201_at	SRY (sex determining region Y)-box 4	
Hu35KsubA	AA418098_at	cAMP responsive element binding protein-like 2	
Hu35KsubA	AA424381_s_at	Forkhead box C1	
Hu35KsubA	AA431268_at		
Hu35KsubA	AA436315_at	forkhead box O3A	
Hu35KsubA	AA456687_at	nuclear factor I/A	
Hu35KsubA		regulatory factor X-associated ankyrin-containing protein	
Hu35KsubA	AA489299_at	transcriptional adaptor 3 (NGG1 homolog, yeast)-like	
Hu35KsubA	AA504413 at	Solute carrier family 25, member 29	
Hu35KsubA	AB002302 at	mveloid/lymphoid or mixed-lineage leukemia 4	
Hu35KsubA	AB002305 at	aryl-hydrocarbon receptor nuclear translocator 2	
Hu35KsubA	AB004066 at	basic helix-loop-helix domain containing, class B. 2	
Hu35KsubA	C02099 s at	methionine sulfoxide reductase B2	
Hu35KsubA	D45333 at	prefoldin 1	
Hu35KsubA	D61676 at	Pre-B-cell leukemia transcription factor 1	
Hu35KsubA	D82636 at	CCR4-NOT transcription complex. subunit 7	
Hu35KsubA	 H45647_at	hairy/enhancer-of-split related with YRPW motif 1	
Hu35KsubA	IKAROS_at	zinc finger protein, subfamily 1A, 1 (Ikaros)	
Hu35KsubA	L07592_at	peroxisome proliferative activated receptor, delta	
Hu35KsubA	 L13203_at	forkhead box I1	
		MADS box transcription enhancer factor 2, polypeptide D	
Hu35KsubA	L16794_s_at	(myocyte enhancer factor 2D)	
Hu35KsubA	L40904_at	peroxisome proliferative activated receptor, gamma	
		nuclear factor of activated T-cells, cytoplasmic, calcineurin-	
Hu35KsubA	L41067_at	dependent 3	
		androgen receptor (dihydrotestosterone receptor; testicular	
Hu35KeubA	M23263 at	disease)	
Hu35KsubA	M62626 s at	Uisedse) T-cell laukomia, homeobox 1	
Hu35KsubA	M79/62 at	r-ceii leukemia, nomeobox 1	
Hu35KsubA	M02200 s at	promyelocytic leukemia	
Hu35KsubA	M93650 at	naired box 20	
Hu35KsubA	M96577 s at	F2F transcription factor 1	
Hu35KeubA	M97676 at	msh homeo hox homolog 1 (Drosonhila)	
Hu35KeubA	N32724 at	high-mobility group 20B	
Hu35KeubA	N83192 at	KIAA0669 gene product	
Hu35KeubA	RC AA020288 at	zinc finger protein 83 (HPF1)	
	$RC \Delta\Delta 0.10600 \text{ at}$	ELK3 ETS-domain protein (SPE accessory protein 2)	
TUSSINSUDA	110_AA040099_al	$\Box \Box \Lambda S$, $\Box \Lambda S$ -uomain protein (SKF accessory protein 2)	

Hu35KsubA	RC_AA045545_at	glucocorticoid modulatory element binding protein 2
		TAF5-like RNA polymerase II, p300/CBP-associated factor
Hu35KsubA	RC_AA055932_at	(PCAF)-associated factor, 65kDa
Hu35KsubA	RC_AA065094_at	trinucleotide repeat containing 4
Hu35KsubA	RC_AA069549_at	zinc finger protein 37a (KOX 21)
Hu35KsubA	RC_AA114866_s_at	homeo box A11
Hu35KsubA	RC_AA121121_at	Huntingtin interacting protein 2
Hu35KsubA	RC_AA135095_at	high-mobility group 20B
Hu35KsubA	RC_AA136474_at	Meis1, myeloid ecotropic viral integration site 1 homolog 2 (mouse)
Hu35KsubA	RC AA150205 at	Kruppel-like factor 7 (ubiquitous)
Hu35KsubA	RC AA156112 at	Krueppel-related zinc finger protein
Hu35KsubA	RC AA156359 at	TAR DNA binding protein
Hu35KsubA	RC AA156792 at	hairv/enhancer-of-split related with YRPW motif-like
Hu35KsubA	RC AA235980 at	transcription factor EB
Hu35KsubA	RC AA252161 at	p66 alpha
Hu35KsubA	RC AA253429 at	zinc finger protein 175
Hu35KsubA	RC AA256678 at	CCR4-NOT transcription complex. subunit 7
Hu35KsubA	RC AA256680 at	Nuclear factor I/B
Hu35KsubA	RC AA280130 at	checkpoint suppressor 1
Hu35KsubA	RC AA284143 at	arginine-glutamic acid dipeptide (RE) repeats
Hu35KsubA	RC AA286809 at	upstream binding protein 1 (LBP-1a)
Hu35KsubA	RC AA292717 at	forkhead box P1
Hu35KsubA	RC AA347288 at	growth arrest-specific 7
Hu35KsubA	RC AA379087 s at	apoptosis antagonizing transcription factor
Hu35KsubA	RC AA393876 s at	nuclear receptor subfamily 2, group F, member 2
Hu35KsubA	RC AA419547 at	E74-like factor 5 (ets domain transcription factor)
Hu35KsubA	RC AA421050 at	zinc finger protein 444
Hu35KsubA	RC AA425309 at	Nuclear factor I/B
Hu35KsubA	RC AA428024 at	ubinuclein 1
Hu35KsubA	RC_AA430032_at	pituitary tumor-transforming 1
Hu35KsubA	RC AA431399 at	arginine-glutamic acid dipeptide (RE) repeats
Hu35KsubA	RC_AA436608_at	SATB family member 2
Hu35KsubA	RC_AA443090_s_at	interferon regulatory factor 7
Hu35KsubA	RC_AA443962_at	MYST histone acetyltransferase 2
Hu35KsubA	RC_AA452256_at	zinc finger protein 265
Hu35KsubA	RC_AA456289_at	nuclear factor I/A
Hu35KsubA	RC_AA456677_at	zinc finger protein, subfamily 1A, 4 (Eos)
Hu35KsubA	RC_AA464251_at	LOC440448
		nuclear factor of activated T-cells, cytoplasmic, calcineurin-
Hu35KsubA	RC_AA476720_at	dependent 1
Hu35KsubA	RC_AA478590_at	forkhead box O3A
Hu35KsubA	RC_AA478596_at	zinc fingers and homeoboxes 2
		v-ets erythroblastosis virus E26 oncogene homolog 1
		(avidi) CAMD reasonably a element hinding protein 1
	DC AA504144_at	CANTE TESPONSIVE Element binding protein 1
	$RC AASU4147_S_at$	forkhood hov O1A (rbabdom/coorcomo)
	RC AAOUSUI/_S_AT	forkhood hov 12
Adusvicenti	RU_AA021179_at	IUIKIIEAU DUX JZ

Hu35KsubA	RC_AA621680_at	Kruppel-like factor 4 (gut)	
		myeloid/lymphoid or mixed-lineage leukemia (trithorax	
Hu35KsubA	RC_D59299_i_at	homolog, Drosophila); translocated to, 10	
Hu35KsubA	U09366_at	zinc finger protein 133 (clone pHZ-13)	
Hu35KsubA	U17163_at	ets variant gene 1	
Hu35KsubA	U28687_at	zinc finger protein 157 (HZF22)	
Hu35KsubA	U33749_s_at	thyroid transcription factor 1	
Hu35KsubA	U53831_s_at	interferon regulatory factor 7	
Hu35KsubA	U62392_at	zinc finger protein 193	
Hu35KsubA	U63824_at	TEA domain family member 4	
Hu35KsubA	U76388_at	nuclear receptor subfamily 5, group A, member 1	
Hu35KsubA	U81600_at	paired related homeobox 2	
		Meis1, myeloid ecotropic viral integration site 1 homolog	
Hu35KsubA	U85707_at	(mouse)	
Hu35KsubA	U88047_at	AT rich interactive domain 3A (BRIGHT- like)	
Hu35KsubA	U89995_at	forkhead box E1 (thyroid transcription factor 2)	
Hu35KsubA	W20276_f_at	CG9886-like	
Hu35KsubA	W26259_at	forkhead box O3A	
		Myeloid/lymphoid or mixed-lineage leukemia (trithorax	
Hu35KsubA	W55861_at	homolog, Drosophila)	
Hu35KsubA	W67850_s_at	TGFB-induced factor 2 (TALE family homeobox)	
Hu35KsubA	X13403_s_at	POU domain, class 2, transcription factor 1	
Hu35KsubA	X16666_s_at	homeo box B1	
Hu35KsubA	X52402_s_at	homeo box C5	
Hu35KsubA	X52560_s_at	CCAAT/enhancer binding protein (C/EBP), beta	
Hu35KsubA	X58431_rna2_s_at	homeo box B6	
Hu35KsubA	X68688 ma1 s at	zinc finger protein 11b (KOX 2) /// zinc finger protein 33a (KOX 31)	
Hu35KsubA	X70683 at	SRY (sex determining region Y)-box 4	
Hu35KsubA	X99101 at	estrogen receptor 2 (ER beta)	
Hu35KsubA	X99350 ma1 at	forkhead box .11	
Hu35KsubA	Y10746 at	methyl-CnG binding domain protein 1	
Hu35KsubA	714077 s at	YY1 transcription factor	

Normal/tumor classifier and *k*NN prediction of mouse lung samples

In order to build a classifier of normal samples vs. tumor samples based on the miGCM collection, we first picked tissues that have enough normal and tumor samples

(at least 3 in each class). The following list summarizes the tissues for this analysis.

Table: Number of Training Samples Used to Build the Normal/Tumor Classifier

Tissue	Number of Normal	Number of Tumor
Colon	5	10

Kidney	3	5
Prostate	8	6
Uterus	9	10
Lung	4	6
Breast	3	6

kNN ¹¹ is a predicting algorithm that learns from a training data set (in this case, the above samples from the miGCM data set) and predicts samples in a test data set (in this case, the mouse lung sample set). A set of markers (features that best distinguishes two classes of samples, in this case, normal vs. tumor) was selected using the training data set. Distances between the samples were measured in the space of the selected markers. Prediction is performed, one test sample at a time, by: (i), identifying the *k* nearest samples (neighbors) of the test sample among the training data set; and (ii) assigning the test sample to the majority class of these *k* samples.

We first selected markers that best differentiate the normal and tumor samples (see Supplementary Methods) out of the 187 features that passed the filter (which was applied on the training set alone). This generated a list of 131 markers that each has a p-value <0.05 after Bonferroni correction; 129/131 markers are over-expressed in normal samples, whereas 2/131 are over-expressed in the tumor samples. The following table lists these markers.

Probe	Description	Bonferroni- corrected p-value	Variance-thresholded t-test score
EAM159	hmr_miR-130a	0	10.984
EAM331	hmr_miR-30e	0	10.756
EAM311	hmr_miR-101	0	10.392
EAM299	hmr_miR-195	0	9.957
EAM314	hmr_miR-126	0	9.498
EAM300	h_miR-197	0	8.762
EAM181	hmr_let-7f	0	8.299
EAM380	r_miR-140*	0	8.238

Table: Normal/Tumor Makers Selected On the Training Set

EAM111	hm let-7g	0	8.235
EAM381	r miR-151*	0	8.198
EAM218	hmr miR-152	0	8.180
EAM183	hmr_let-7i	0	8.098
EAM253	hmr_miR-218	0	8.077
EAM155	hmr_miR-136	0	8.058
EAM192	hmr_miR-126*	0	7.991
EAM222	hm_miR-15a	0	7.970
EAM161	hmr_miR-28	0	7.949
EAM184	hmr_miR-100	0	7.894
EAM271	hmr_miR-30c	0	7.848
EAM270	hmr_miR-30b	0	7.731
EAM303	hm_miR-199a*	0	7.519
EAM121	hmr_miR-99a	0	7.515
EAM392	r_miR-352	0	7.476
EAM255	hmr_miR-22	0	7.465
EAM249	hmr_miR-214	0	7.338
EAM160	hmr_miR-26b	0	7.313
EAM133	hmr_miR-324-5p	0	7.266
EAM238	hm_miR-1	0	7.259
EAM179	hmr_let-7d	0	7.235
EAM339	hmr_miR-99b	0	7.225
EAM185	hmr_miR-103	0	7.047
EAM168	hmr_let-7e	0	7.034
EAM200	hmr_miR-133a	0	6.959
EAM278	hmr_miR-98	0	6.952
EAM333	hmr_miR-32	0	6.951
EAM291	hmr_miR-185	0	6.910
EAM187	hmr_miR-107	0	6.879
EAM263	hmr_miR-26a	0	6.818
EAM261	hmr_miR-23b	0	6.814
EAM371	hmr_miR-342	0	6.743
EAM330	hmr_miR-30a-5p	0	6.717
EAM280	hmr_miR-30a-3p	0	6.662
EAM233	hmr_miR-196a	0	6.630
EAM292	hmr_miR-186	0	6.602
EAM115	hmr_miR-16	0	6.558
EAM272	hmr_miR-30d	0	6.516
EAM367	hmr_miR-338	0	6.428
EAM379	r_miR-129*	0	6.323
EAM193	hmr_miR-125a	0	6.222
EAM273	hmr_miR-33	0	6.209
EAM223	hmr_miR-15b	0	6.148
EAM105	hmr_miR-125b	0	6.111
EAM385	hmr_miR-335	0	6.011
EAM237	hmr_miR-19b	0	5.981
EAM320	hm_miR-189	0	5.938
EAM262	hmr_miR-24	0	5.909

EAM240	hmr_miR-20	0	5.908
EAM260	hmr_miR-23a	0	5.901
EAM297	hmr_miR-193	0	5.856
EAM236	hmr_miR-19a	0	5.789
EAM264	hmr_miR-27b	0	5.780
EAM205	hmr_miR-138	0	5.721
EAM234	hmr_miR-199a	0	5.718
EAM207	hmr_miR-140	0	5.561
EAM217	hmr_miR-150	0	5.531
EAM235	h_miR-199b	0	5.516
EAM190	hr_miR-10b	0	5.511
EAM282	m_miR-199b	0	5.483
EAM335	h_miR-34b	0	5.315
EAM288	m_miR-10b	0	5.291
EAM275	hmr_miR-34a	0	5.287
EAM195	hmr_miR-128b	0	5.253
EAM328	hmr_miR-301	0	5.203
EAM365	hmr_miR-331	0	5.191
EAM131	hmr_miR-92	0	5.155
EAM215	hmr_miR-148b	0	5.091
EAM325	hmr_miR-27a	0	5.090
EAM279	hmr_miR-29c	0	5.025
EAM369	hmr_miR-340	0	4.959
EAM354	m_miR-297	0	4.953
EAM119	hmr_miR-29b	0	4.937
EAM210	hmr_miR-143	0	4.908
EAM361	hmr_miR-326	0	4.790
EAM324	hmr_miR-25	0	4.764
EAM226	hmr_miR-181a	0	4.742
EAM343	mr_miR-151	0	4.740
EAM228	hmr_miR-181c	0	4.675
EAM366	mr_miR-337	0	4.661
EAM349	mr_miR-292-3p	0	4.652
EAM189	hmr_miR-10a	0	4.494
EAM355	mr_miR-298	0	4.446
EAM318	h_miR-17-3p	0	4.324
EAM387	r_miR-343	0	4.140
EAM363	mr_miR-329	0	4.118
EAM268	hmr_miR-29a	0	4.044
EAM175	hmr_miR-320	0	3.875
EAM212	hmr_miR-145	0	3.869
EAM378	mr_miR-7b	0	3.853
EAM281	mr_miR-217	0	3.670
EAM307	m_miR-202	0	3.625
EAM209	hmr_miR-142-5p	0	3.594
EAM163	hmr_miR-142-3p	0	3.545
EAM384	r_miR-333	0	3.410
EAM362	hmr_miR-328	0	3.356

EAM329	hm_miR-302a	0	3.348
EAM368	hmr_miR-339	0	3.007
EAM351	m_miR-293	0	2.852
EAM153	hmr_let-7a	0	2.818
EAM360	mr_miR-325	0	2.753
EAM145	hmr_let-7c	0	2.393
EAM348	mr_miR-291-5p	0	2.092
EAM298	hmr_miR-194	0	2.068
EAM250	h_miR-215	0	1.746
EAM229	hm_miR-182	0.005	-4.074
EAM224	hmr_miR-17-5p	0.005	4.875
EAM341	m_miR-106a	0.005	4.185
EAM242	hmr_miR-204	0.005	3.457
EAM295	hmr_miR-190	0.005	3.186
EAM353	m_miR-295	0.005	2.916
EAM246	h_miR-211	0.005	2.663
EAM248	hmr_miR-213	0.01	3.369
EAM186	h_miR-106a	0.01	4.650
EAM137	hmr_miR-132	0.01	3.388
EAM258	hmr_miR-222	0.015	4.257
EAM230	hmr_miR-183	0.02	-3.977
EAM364	mr_miR-330	0.02	3.982
EAM206	hmr_miR-139	0.02	3.761
EAM327	hmr_miR-299	0.025	2.353
EAM232	hmr_miR-192	0.04	1.065
EAM257	hmr_miR-221	0.04	4.321
EAM216	hm_miR-149	0.04	3.711

These 131 markers were used without modification to predict the 12 mouse lung samples using the *k*-nearest neighbour algorithm. Each mouse sample was predicted separately, using \log_2 transformed mouse and human expression data. The tumor/normal phenotype prediction of a mouse sample was based on the majority type of the *k* nearest human samples using the chosen metric in the selected feature space. Since the tumor/normal distinction was observed at the raw miRNA expression levels, we decided to use Euclidean distance to measure the distances between samples. Thus, we performed *k*NN with the Euclidean distance measure and *k*=3, resulting in 100% accuracy. The detailed prediction results are available in Supplementary Table 3. Similar classification

results were obtained with other kNN parameters, with the exception of one mouse tumor T_MLUNG_5 (3rd column from right in Fig. 3b). This sample was occasionally classified as normal, for example, when using cosine distance measure (k=3). It should be pointed out that cosine distance captures less an overall shift in expression levels compared to Euclidean distance. It rather focuses on comparing the relationships among the different miRNAs So it appears that the same miRNA data capture different information with different distance metrics; Pearson correlation captures information about the lineage (as seen in clustering results), and Euclidean distance captures the normal/tumor distinction.

Differentiation of HL-60 cells

One hypothesis for the global decrease of miRNA expression in tumors (Fig. 2a, Fig. 3a,b) is that many miRNAs are upregulated during differentiation. We examined an *in vitro* differentiation system, the differentiation of HL-60 acute myeloblastic leukemia cells. HL-60 cells differentiate with increasing neutrophil characteristics upon treatment with *all-trans* retinoic acid (ATRA) during a course of 5 days ¹². We found 59 miRNAs commonly expressed (see Supplementary Methods for the definition of "expressed") in three independent experiments of HL-60 cells with or without ATRA treatment. A list of these 59 miRNAs is shown below. A heatmap is shown in Fig. 3c, reflecting averages of successfully profiled same condition samples. Results indicate increased expression of many miRNAs after 5 days of ATRA-induced differentiation (5d+). Since HL-60 is a cancerous cell line, this result supports the hypothesis that the global miRNA

miRNA expression change is associated with certain windows of differentiation needs

further investigation.

Table: 59 miRNAs Detected in HL-60 Cells

Probe	miRNA	
EAM103	Hmr_miR-124a	
EAM111	Hm_let-7g	
EAM115	Hmr_miR-16	
EAM119	Hmr_miR-29b	
EAM131	Hmr_miR-92	
EAM145	Hmr_let-7c	
EAM270	hmr_miR-30b	
EAM163	hmr_miR-142-3p	
EAM186	h_miR-106a	
EAM209	hmr_miR-142-5p	
EAM223	hmr_miR-15b	
EAM224	hmr_miR-17-5p	
EAM226	hmr_miR-181a	
EAM227	hmr_miR-181b	
EAM236	hmr_miR-19a	
EAM257	hmr_miR-221	
EAM258	hmr_miR-222	
EAM259	hmr_miR-223	
EAM273	hmr_miR-33	
EAM297	hmr_miR-193	
EAM282	m_miR-199b	
EAM279	hmr_miR-29c	
EAM278	hmr_miR-98	
EAM272	hmr_miR-30d	
EAM264	hmr_miR-27b	
EAM263	hmr_miR-26a	
EAM262	hmr_miR-24	
EAM261	hmr_miR-23b	
EAM260	hmr_miR-23a	
EAM244	hmr_miR-21	
EAM240	hmr_miR-20	
EAM237	hmr_miR-19b	
EAM228	hmr_miR-181c	
EAM222	hm_miR-15a	
EAM219	hmr_miR-153	
EAM218	hmr_miR-152	
EAM206	hmr_miR-139	
EAM193	hmr_miR-125a	
EAM187	hmr_miR-107	
EAM185	hmr_miR-103	
EAM181	hmr_let-7f	

EAM179	hmr_let-7d
EAM175	hmr_miR-320
EAM160	hmr_miR-26b
EAM153	hmr_let-7a
EAM147	hmr_let-7b
EAM311	hmr_miR-101
EAM313	hmr_miR-106b
EAM318	h_miR-17-3p
EAM324	hmr_miR-25
EAM329	hm_miR-302a
EAM331	hmr_miR-30e
EAM337	hmr_miR-93
EAM341	m_miR-106a
EAM352	m_miR-294
EAM364	mr_miR-330
EAM368	hmr_miR-339
EAM380	r_miR-140*
EAM392	r_miR-352

Erythroid differentiation of primary hematopoietic cells in vitro

We profiled the expression of miRNAs during erythroid differentiation *in vitro* to ask whether the increase in miRNA expression observed in the differentiation of HL-60 cells also occurs in primary cells. The accessibility of normal hematopoietic progenitor cells and the ability to recapitulate erythropoiesis *in vitro* provide a model to study normal differentiation. We purified CD34⁺ hematopoietic progenitor cells from umbilical cord blood. Erythroid differentiation was induced *in vitro* using a two phase liquid culture system. The state of differentiation of cultured cells was monitored every other day by evaluating expression of CD71 and glycophorin A (Gly-A) (Supplementary Fig. 7b). CD71 expression increases early in erythroid differentiation and gradually decreases in terminal erythroid differentiation. Gly-A expression increases later in erythropoiesis and remains elevated through terminal differentiation. As in HL60 cells, the expression of many miRNAs increased during differentiation (Supplementary Figure 7c). Unlike HL- 60 cells, the erythroid cells continued to proliferate at the time points when miRNA expression increased (Supplementary Figure 7a). This suggests that proliferation itself, which is often integrally linked to differentiation, cannot account completely for the increased miRNA expression during differentiation.

Analyzing tissue samples using an mRNA proliferation signature

It is conceivable that differences in cellular proliferation, often integrally linked to differentiation, may contribute to the global miRNA signals. We asked whether the miRNA global expression differences among samples are merely a consequence of their differences in proliferation rates. To estimate the proliferation rates in tissue samples, we assembled a consensus mRNA signature of proliferation, reported to positively correlate with proliferation or mitotic index in breast tumors, lymphomas and HeLa cells ¹³⁻¹⁵. The table below summarizes this list.

We first asked whether the mRNA proliferation signature reflects proliferation rates in our samples. Indeed, we noticed that the mean expression of these mRNAs is higher in tumors than normal tissues (Supplementary Fig. 8), reflecting faster proliferation rates in tumor samples.

Next, we examined in the tumor samples the expression of the mRNA proliferation signature. We focused on lung and breast, two tissues that we have sufficient numbers of poorly differentiated tumors and more differentiated tumors. It is important to point out that poorly differentiated tumors have globally lower miRNA expression than more differentiated tumors. However, we did not observe any difference in the mRNA proliferation signature between these two categories of samples

(Supplementary Fig. 8). This result also suggests that the global miRNA expression is

unlikely to be solely dependent on proliferation rates.

Chip	Probe Set ID	Gene Title
Hu6800	AB003698_at	CDC7 cell division cycle 7 (S. cerevisiae)
Hu6800	D00596_at	thymidylate synthetase
Hu6800	D14134_at	RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae)
		MCM2 minichromosome maintenance deficient 2, mitotin (S.
Hu6800	D21063_at	cerevisiae)
		MCM3 minichromosome maintenance deficient 3 (S.
Hu6800	D38073_at	cerevisiae)
Hu6800	D38550_at	E2F transcription factor 3
	D94557 of	MCM6 minichromosome maintenance deficient 6 (MIS5
ПИОООО	D04007_dt	dibudrofolate reductase pseudogene 1 /// dibudrofolate
Hu6800	.100139 s at	reductase
Hu6800	J04088 at	topoisomerase (DNA) II alpha 170kDa
Hu6800	J05614 at	proliferating cell nuclear antigen
Hu6800	1 07493 at	replication protein A3 14kDa
1100000		cvclin-dependent kinase inhibitor 3 (CDK2-associated dual
Hu6800	L25876_at	specificity phosphatase)
Hu6800	L32866_at	baculoviral IAP repeat-containing 5 (survivin)
Hu6800	L47276_s_at	topoisomerase (DNA) II alpha 170kDa
Hu6800	M15796_at	proliferating cell nuclear antigen
Hu6800	M25753_at	cyclin B1
Hu6800	M34065_at	cell division cycle 25C
Hu6800	M74093_at	cyclin E1
Hu6800	M87339_at	replication factor C (activator 1) 4, 37kDa
Hu6800	M94362_at	lamin B2
Hu6800	S49592_s_at	E2F transcription factor 1
Hu6800	S78187_at	cell division cycle 25B
Hu6800	U04810_at	trophinin associated protein (tastin)
Hu6800	U05340_at	CDC20 cell division cycle 20 homolog (S. cerevisiae)
Hu6800	U14518_at	centromere protein A, 17kDa
Hu6800	U20979_at	chromatin assembly factor 1, subunit A (p150)
Hu6800	U22398_at	cyclin-dependent kinase inhibitor 1C (p57, Kip2)
		cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits
Hu6800	U26727_at	CDK4)
Hu6800	U28386_at	karyopherin alpha 2 (RAG cohort 1, importin alpha 1)
Hu6800	U30872_at	centromere protein F, 350/400ka (mitosin)
Hu6800	U37022_rna1_at	cyclin-dependent kinase 4
Hu6800	U47677_at	E2F transcription factor 1
Hu6800	U56816_at	membrane-associated tyrosine- and threonine-specific cdc2- inhibitory kinase

Table: mRNAs used to estimate proliferation rates

Hu6800	U65410_at	MAD2 mitotic arrest deficient-like 1 (yeast)	
Hu6800	U74612_at	forkhead box M1	
Hu6800	U77949_at	CDC6 cell division cycle 6 homolog (S. cerevisiae)	
Hu6800	X05360_at	cell division cycle 2, G1 to S and G2 to M	
Hu6800	X13293_at	v-myb myeloblastosis viral oncogene homolog (avian)-like 2	
Hu6800	X51688_at	cyclin A2	
Hu6800	X54942_at	CDC28 protein kinase regulatory subunit 2	
Hu6800	X59543_at	ribonucleotide reductase M1 polypeptide	
Hu6800	X59618_at	ribonucleotide reductase M2 polypeptide	
		MCM3 minichromosome maintenance deficient 3 (S.	
Hu6800	X62153_s_at	cerevisiae)	
Hu6800	X65550_at	antigen identified by monoclonal antibody Ki-67	
Hu6800	X74330_at	primase, polypeptide 1, 49kDa	
	V74704 of	MCM4 minichromosome maintenance deficient 4 (S.	
Πυθουυ	∧/4/94_al	MCM5 minichromosome maintenance deficient 5, cell division	
Hu6800	X74795 at	cycle 46 (S. cerevisiae)	
Hu6800	X87843 at	menage a trois 1 (CAK assembly factor)	
Hu6800	X89398 cds2 at	uracil-DNA glycosylase	
Hu6800	X95406 at	cvclin E1	
Hu6800	X97795 at	RAD54-like (S. cerevisiae)	
Hu6800	Z15005 at	centromere protein E, 312kDa	
Hu6800	Z29066 s at	NIMA (never in mitosis gene a)-related kinase 2	
Hu6800	Z29077_xpt1_at	cell division cycle 25C	
Hu6800	Z36714_at	cyclin F	
Hu35KsubA	AA436304_at	RAN, member RAS oncogene family	
Hu35KsubA	AF004709_at	mitogen-activated protein kinase 13	
Hu35KsubA	M96577_s_at	E2F transcription factor 1	
Hu35KsubA	RC_AA599859_at	Cyclin B1	
Hu35KsubA	RC_AA620553_s_at	flap structure-specific endonuclease 1	
Hu35KsubA	U75285_rna1_at	baculoviral IAP repeat-containing 5 (survivin)	
Hu35KsubA	U78310_at	pescadillo homolog 1, containing BRCT domain (zebrafish)	
Hu35KsubA	W28391_at	proliferation-associated 2G4, 38kDa	
		MCM4 minichromosome maintenance deficient 4 (S.	
Hu35KsubA	X74794_at	cerevisiae)	
Hu35KsubA	Z68092_s_at	cell division cycle 25B	

RT-PCR analyses of genes involved in miRNA machinery

One possible mechanism of the observed global miRNA expression difference between normal samples and tumors is changes in expression levels of miRNA processing enzymes. In lung cancer, Dicer levels were reported to correlate with prognosis ¹⁶. We decided to examine Dicer1, Drosha, DGCR8 and Argonaute 2 (Ago2), which are critical in miRNA processing ¹⁷. Lacking probe sets representing these genes in our mRNA data, we used quantitative RT-PCR and analyzed 79 samples (32 normal samples and 47 tumors, covering 8 tissues, including colon, breast, uterus, lung, kidney, pancreas, prostate and bladder). We normalized the quantitative PCR data with 18S rRNA levels. We performed Student's t-test (two-tail, unequal variance) for normal/tumor phenotypes on all samples examined (P = 0.3 for Dicer1, P = 0.11 for Drosha, P = 0.0011 for DGCR8, P = 0.0138 for Ago2). DGCR8 and Ago2 have significant nominal p-values under the above test. However, the fold differences of DGCR8 and Ago2 are small between tumors and normal samples (tumor samples have higher mean threshold cycle (Ct) values for these two genes; the mean Ct differences between normal and tumor samples are: 0.776 for DGCR8 and 0.798 for Ago2, corresponding to 1.7-fold and 1.5-fold absolute level differences respectively, after correction for PCR amplification efficiency). Whether or not the observed weak decreases on the transcript level may account for the differences in miRNA expression needs further investigation. It is also important to note that these results do not exclude the possibility that these miRNA machinery genes are involved in regulating tumor/normal miRNA expression in certain cancer types, or are regulated on the protein and activity levels.

Analyses of poorly differentiated tumors

We first set out to determine whether poorly differentiated tumors show a globally weaker miRNA expression than tumor samples in the miGCM collection, which represent more differentiated states. To this end, we made a comparison of poorly differentiated tumors to more differentiated tumors of the corresponding tissue types. The analysis was performed on 180 features, after the data were filtered to eliminate non-expressing miRNAs on the 55 samples which belong to tissue types that have both more-differentiated and poorly-differentiated samples (see the hierarchical clustering section in Supplementary Methods for data filtration). Supplementary Fig. 5 shows that poorly differentiated tumors indeed have globally lower miRNA expression. Out of the 180 features, 95 miRNAs display lower mean expression levels in poorly differentiated tumors (p<0.05 with a variance-thresholded t-test).

We used PNN for prediction of tissue origin of poorly differentiated tumors. PNN is a probability based prediction algorithm and can be considered as a smooth version of kNN. For a multi-class prediction, PNN avoids the ambiguity often encountered with kNN, when multiple training classes are equally presented in the k nearest neighbours of a test sample. For a two-class classification problem, PNN assigns a probability for a test sample to be classified into one of the two classes. The contribution of each training sample to the classification of a test sample is related to their distance and follows the Gaussian distribution: the closer the test sample, the larger the contribution. The probability for a test sample to belong to a certain class is the total contribution from every training sample belonging to that class, divided by the total contributions of all training samples (see Supplementary Methods for more details).

For the prediction of poorly differentiated tumors, the training sample set consists of 68 tumor samples with both miRNA and mRNA profiling data, covering 11 tissue types. The test set contains 17 poorly differentiated tumors. A table below summarizes the information on the 17 poorly differentiated tumors. To solve this multi-class

prediction problem, we broke down the task into 11 two-class predictions. Each two-class prediction assigns a probability for a test sample to belong to a certain tissue-type vs. the rest of the tissue-types (one vs. the rest, OVR), for example, colon vs. non-colon. After performing OVR classifications for all 11 tissues, the one tissue-type that receives the highest probability marks the predicted tissue type. The prediction results are summarized in supplementary Table 4.

	Sample of Primary		
or Metastatic			
Sample Name	Origin	Primary Site	Metastatic Site
PDT_BRST_1	Primary	Breast	
PDT_BRST_2	Primary	Breast	
PDT_BRST_3	Primary	Breast	
PDT_BRST_4	Primary	Breast	
			Lymph node
PDT_BRST_5	Metastatic	Breast	/supraclavic
PDT_COLON_1	Primary	Colon	
PDT_LBL_1	Primary	Lymph node	Groin
PDT_LUNG_1	Metastatic	Lung	Kidney
PDT_LUNG_2	Primary	Lung	
PDT_LUNG_3	Primary	Lung	
PDT_LUNG_4	Primary	Lung	
PDT_LUNG_5	Metastatic	Lung	Adrenal
PDT_LUNG_6	Primary	Lung	
PDT_LUNG_7	Primary	Lung	
PDT_LUNG_8	Primary	Lung	
PDT_OVARY_1	Primary	Ovary	
PDT_OVARY_2	Metastatic	Ovary	Omentum
PDT_OVARY_3	Primary	Ovary	
PDT_STOM_1	Primary	Stomach / GE_Jct	

Table: Information on Poorly Differentiated Tumor Samples

Supplementary References

- 1. Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A 98, 15149-54 (2001).
- 2. Ebert, B. L. et al. An RNA interference model of RPS19 deficiency in Diamond Blackfan Anemia recapitulates defective hematopoiesis and rescue by dexamethasone: identification of dexamethasone responsive genes by microarray. Blood (2005).
- 3. Miska, E. A. et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5, R68 (2004).
- 4. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in *Caenorhabditis elegans*. Science 294, 858-62 (2001).
- 5. Jain, A. K. & Dubes, R. C. Algorithms for clustering data. Prentice-Hall Inc., Upper Saddle River (1988).
- 6. Good, P. I. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses, 2nd Ed. Springer-Verlag, New York (2000).
- 7. Specht, D. F. Probabilistic Neural Networks, Neural Networks. Elsevier Science Ltd., St. Louis 3, 109-118 (1990).
- 8. Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Res 32 Database issue, D109-11 (2004).
- 9. Ambros, V. et al. A uniform system for microRNA annotation. RNA 9, 277-9 (2003).
- 10. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr Biol 12, 735-9 (2002).
- 11. Duda, R. O., Hart, P. E. & Stork, D. G. Pattern Classification, 2nd Ed. Wiley-Interscience, Hoboken (2000).
- 12. Stegmaier, K. et al. Gene expression-based high-throughput screening(GE-HTS) and application to leukemia differentiation. Nat Genet 36, 257-63 (2004).
- 13. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503-11 (2000).
- 14. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747-52 (2000).
- 15. Whitfield, M. L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13, 1977-2000 (2002).
- 16. Karube, Y. et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96, 111-5 (2005).
- 17. Tomari, Y. & Zamore, P. D. MicroRNA biogenesis: drosha can't cut it without a partner. Curr Biol 15, R61-4 (2005).