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MicroRNA expression profiles classify human

cancers
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Recent work has revealed the existence of a class of small non-
coding RNA species, known as microRNAs (miRNAs), which
have critical functions across various biological processes'”.
Here we use a new, bead-based flow cytometric miRNA expression
profiling method to present a systematic expression analysis of 217
mammalian miRNAs from 334 samples, including multiple
human cancers. The miRNA profiles are surprisingly informative,
reflecting the developmental lineage and differentiation state of
the tumours. We observe a general downregulation of miRNAs in
tumours compared with normal tissues. Furthermore, we were
able to successfully classify poorly differentiated tumours using
miRNA expression profiles, whereas messenger RNA profiles were
highly inaccurate when applied to the same samples. These
findings highlight the potential of miRNA profiling in cancer
diagnosis.

Much progress has been made over the last decade in developing a
molecular taxonomy of cancer (see ref. 3). In particular, it has
become clear that among the ~22,000 protein-coding transcripts
are mRNAs that can be used to classify a wide variety of human
cancers®. Recently, hundreds of small, non-coding miRNAs have
been discovered (see ref. 1). The first identified miRNAs, the
products of the C. elegans genes lin-4 and let-7, have important
roles in controlling developmental timing and probably act by
regulating mRNA translation®”. When lin-4 or let-7 is inactivated,
specific epithelial cells undergo additional cell divisions instead of
their normal differentiation. Because abnormal cell proliferation is a
hallmark of human cancers, it seems possible that miRNA expression
patterns might denote the malignant state. Indeed, altered expression
of a few miRNAs has been found in some tumour types®''. However,
the potential for miRNA expression to inform cancer diagnosis has
not been systematically explored.

To determine the expression pattern of all known miRNAs, we first
needed to develop an accurate and inexpensive profiling method.
This goal is challenging, because of the short size of miRNAs
(about 21 nucleotides) and the sequence similarity between
miRNA family members. Glass-slide microarrays have been used
for miRNA profiling'*'%, but cross-hybridization of related miRNAs
has been problematic. We therefore developed a bead-based profiling
method. Oligonucleotide-capture probes complementary to
miRNAs of interest were coupled to carboxylated 5-micron poly-
styrene beads impregnated with variable mixtures of two fluorescent
dyes (that can yield up to 100 colours), each representing a
single miRNA. Following adaptor ligations which use both the

5'-phosphate and the 3'-hydroxyl groups of miRNAs'?, reverse-
transcribed miRNAs were (1) amplified by polymerase chain reac-
tion (PCR) using a common biotinylated primer, (2) hybridized to
the capture beads, and (3) stained with streptavidin-phycoerythrin.
The beads were then analysed using a flow cytometer capable of
measuring bead colour (denoting miRNA identity) and phycoery-
thrin intensity (denoting miRNA abundance) (see Supplementary
Fig. 1).

Bead-based hybridization has the theoretical advantage that it
might more closely approximate hybridization in solution, and as
such, we might expect the specificity to be superior to glass micro-
array hybridization. Indeed, a spiking experiment involving 11
related sequences showed increased specificity of bead-based detec-
tion compared with microarray-based detection, even for single
base-pair mismatches (Fig. 1la, b). In addition, the bead method
showed linear detection over a hundred-fold range of expression (see
Supplementary Information). The expression patterns of eight
miRNAs in seven different cell lines were validated by northern
blotting. In all cases, bead-based detection paralleled the data from
northern blotting (Fig. 1c). These results demonstrate that bead-
based miRNA detection is feasible, and has the attractive properties
of improved accuracy, high speed and low cost. The bead-based
detection platform also provides flexibility, in that additional miRNA
capture beads can be added to the mixture, allowing detection of
newly discovered miRNAs.

We then set out to determine the expression pattern of all known
miRNAs across a large panel of samples representing diverse human
tissues and tumour types. Although miRNA expression has been
explored in small sets of tissues'*'® or isolated cell types (for
example, chronic lymphocytic leukaemia'®), the extent of differential
miRNA expression across cancers has not been determined. Indeed, we
might not expect that miRNA expression patterns could be informa-
tive with respect to cancer diagnosis, because of the relatively small
number of miRNAs encoded in the genome. However, we observed
differential expression of nearly all miRNAs across cancer types
(Fig. 2a). Moreover, hierarchical clustering of the samples
using miRNA profiles paralleled the developmental origins of the
tissues. For example, samples of epithelial origin were located on a
single branch of the dendrogram, whereas the other major branch was
predominantly populated with samples of haematopoietic
malignancies.

Furthermore, the miRNAs partitioned tumours within a single
lineage. For example, we examined the miRNA profiles of 73 bone
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marrow samples obtained from patients with acute lymphoblastic
leukaemia (ALL). As shown in Fig. 2b, hierarchical clustering
revealed non-random partitioning of the samples into three major
branches: one containing all five t(9;22) BCR/ABL-positive samples
and 10 out of 11 t(12;21) TEL/AMLI samples; a second branch
containing 15 out of 19 T-cell ALL samples; and a third branch
containing all but one of the samples with an MLL gene rearrange-
ment. These experiments demonstrate that even within a single
developmental lineage, distinct patterns of miRNA expression
can be observed that reflect mechanisms of transformation, and
further support the idea that miRNA expression patterns encode the
developmental history of human cancers.

Among the epithelial samples, those of the gastrointestinal tract
were of particular interest. Samples from colon, liver, pancreas and
stomach all clustered together (Fig. 2a), reflecting their common
derivation from tissues of embryonic endoderm. We suggest that
sample clustering in miRNA space is predominantly driven by
developmental history. In contrast, when the same samples were
profiled in the space of ~16,000 mRNAs, the coherence of gut-
derived samples was not observed in hierarchical clustering (Fig. 2¢).
This observation might result from the large amount of noise and
unrelated signals that are embedded in the high-dimensional mRNA
data. Whether or not the miRNAs that are highly expressed in the
gut-associated cluster (miR-192, miR-194 and miR-215) have a
functional role in the specification of gut development or gut-derived
tumours remains to be investigated.

Having determined that miRNA expression distinguishes tumours
of different developmental origin, we next asked whether miRNAs
could be used to distinguish tumours from normal tissues. We have
previously reported that there are no robust mRNA markers that
show consistent differential expression between tumours and normal
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tissues of different lineages®. It was therefore striking to observe that
despite the fact that some miRNA expression levels were upregulated
or unchanged, most of the miRNAs (129 out of 217, P < 0.05 after
correction for multiple hypothesis testing) had lower expression
levels in tumours compared with normal tissues, irrespective of cell
type (Fig. 3a). Cancer cell lines also showed low miRNA expression
relative to normal tissues (see Supplementary Fig. 4).

To exclude any possibility that this differential miRNA expression
might be related to differences in the collection of tumour samples
versus normal samples, we studied a mouse model of K-Ras-induced
lung cancer®. We isolated miRNAs from normal lung or lung
adenocarcinomas from different individual mice, thereby precluding
any differences in collection procedure. Owing to miRNA sequence
conservation between human and mouse, the same miRNA capture
beads could be used to profile the murine samples. As shown in
Fig. 3b, the same distinction between normal and tumour samples is
observed in mouse. Accordingly, a tumour/normal classifier con-
structed with human samples had 100% accuracy when tested in the
mouse. Taken together, these studies indicate that miRNAs are
unexpectedly rich in information content with respect to cancer.

Our observation that miRNA expression seems globally higher in
normal tissues compared with tumours led us to the hypothesis that
global miRNA expression reflects the state of cellular differentiation.
To test this hypothesis, we explored an experimental model in which
we treated the myeloid leukaemia cell line HL-60 with all-trans
retinoic acid, a potent inducer of neutrophilic differentiation®'. As
predicted, miRNA profiling revealed the induction of many miRNAs
coincident with differentiation (Fig. 3¢). In primary human haema-
topoietic progenitor cells undergoing erythroid differentiation
in vitro, we observed a similar increase in miRNA expression at a
stage in differentiation when the cells continued to proliferate (see
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Figure 1| Specificity and accuracy of bead-based miRNA detection.

a, Synthetic oligonucleotides corresponding to the let-7 family and mutants
(mutl-3) (see Supplementary Information for sequence similarity) were
PCR-labelled and hybridized separately on beads and a glass microarray.
Synthetic targets are indicated on the horizontal axis, capture probes on the
vertical axis. Values represent the proportion of signal relative to correct

probe (set to 100%). b, Cumulative cross-hybridization on capture probes.
¢, Northern blot versus bead detection of cell line samples (lanes 1-7: HEL,
K562, TF-1, 293, MCFE-7, PC-3, SKMEL-5 cells). Bead results shown on the
left are averages from three independent experiments for HEL, TF-1, 293,
MCEF-7 and PC-3 cells, and two experiments for K562 and SKMEL-5 cells.
Error bars indicate s.d.
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Supplementary Information). These experiments support the
hypothesis that global changes in miRNA expression are associated
with differentiation, the abrogation of which is a hallmark of all
human cancers. These findings are also consistent with the recent
observation that mouse embryonic stem cells lacking Dicer,
an enzyme required for miRNA maturation, fail to differentiate
normally®.

We next turned to a more challenging diagnostic distinction: that
of tumours of histologically uncertain cellular origin. It is estimated
that 2-4% of all cancer diagnoses represent cancers of unknown
origin or diagnostic uncertainty (see ref. 23). To address this, we
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analysed 17 poorly differentiated tumours, the histological appear-
ance of which was non-diagnostic, but for which clinical diagnosis
was established by anatomical context, either directly (for example, a
primary tumour arising in the colon) or indirectly (a metastasis of a
previously identified primary tumour). A training set of 68 more-
differentiated tumours, representing 11 tumour types and for which
both mRNA and miRNA profiles were available, was used to generate
a classifier. This classifier was then used without modification
to classify the 17 poorly differentiated test samples. As a group,
poorly differentiated tumours had lower global levels of miRNA
expression compared with the more-differentiated training set
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Figure 2 | Hierarchical clustering of miRNA expression. a, miRNA profiles
of 218 samples from several different tissues were clustered (average linkage,
correlation similarity). Samples are in columns, miRNAs in rows. Samples of
epithelial (EP) origin or derived from the gastrointestinal tract (GI) are
indicated. More detail is shown in Supplementary Fig. 4. b, Clustering of 73
bone marrow samples from patients with acute lymphoblastic leukaemia
(ALL). Coloured bars indicate the different ALL subtypes. ¢, Comparison of
miRNA data and mRNA data. For 89 epithelial samples from a that had
mRNA expression data, hierarchical clustering was performed. Samples of
GI origin are shown in blue. GI-derived samples largely cluster together in
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miRNA expression space, but not in mRNA expression space. Abbreviations
used: Bldr, bladder; Brst, breast; Fcc, follicular lymphoma; Kid, kidney; Lvr,
liver; Mela, melanoma; Meso, mesothelioma; Pan, pancreas; Prost, prostate;
Stom: stomach; Ut, uterus; AML: acute myelogenous leukaemia; BALL,
B-cell ALL; LBL, diffuse large-B cell lymphoma; MF, mycosis fungoides;
MLL, mixed lineage leukaemia; TALL, T-cell ALL; Hyper 47-50,
hyperdiploid with 47-50 chromosomes; Hyper >50, hyperdiploid with over
50 chromosomes; Normp, normal ploidy. Further details can be found in
Supplementary Information.
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Figure 3 | Comparison between normal and tumour samples reveals global
changes in miRNA expression. a, Markers were selected to correlate with
the normal versus tumour distinction. A heatmap of miRNA expression is
shown, with miRNAs sorted according to the variance-thresholded ¢-test
score. b, miRNA markers of normal versus tumour distinction in human
tissues from a, applied to normal lungs and lung adenocarcinomas of
K-Ras™ mice. A k-nearest neighbour (kNN) classifier based on human

samples (see Supplementary Fig. 5), consistent with the notion that
miRNA expression is closely linked to differentiation. Despite the
overall low level of miRNA expression, the miRNA-based classifier
established the correct diagnosis of the poorly differentiated samples
with far greater accuracy than would be expected by chance for an 11-
class classifier (12 out of 17 correct; P < 5 X 10~ '"). In contrast, the
mRNA-based classifier was highly inaccurate (1 out of 17 correct;
P =0.47), as we previously reported*.

The experiments reported here demonstrate the feasibility and
utility of monitoring the expression of miRNAs in human cancer.
Our unexpected findings are the extraordinary level of diversity in
miRNA expression across cancers, and the large amount of diag-
nostic information encoded in a relatively small number of miRNAs.
The implication is that, unlike with mRNA expression, a modest
number of miRNAs (~200 in total) might be sufficient to classify
human cancers. Moreover, the bead-based miRNA detection method
has the attractive property of being not only accurate and specific,
but also easy to implement in a routine clinical setting. In addition,
unlike mRNAs, miRNAs remain largely intact in routinely collected,
formalin-fixed, paraffin-embedded clinical tissues'>. More work is
required to establish the clinical utility of miRNA expression in
cancer diagnosis, but the work described here indicates that miRNA
profiling has unexpected diagnostic potential. The mechanism by
which miRNAs are under-expressed in cancer remains unknown. We
did not observe substantial decreases in the mRNAs encoding
components of the miRNA processing machinery (Dicer, Drosha,
Argonaute2 or DGCRS (ref. 24); see Supplementary Information),
but clearly other mechanisms of miRNA regulation are possible.

The findings reported here are consistent with the hypothesis that
in mammals, as in C. elegans, miRNAs can function to prevent cell
division and drive terminal differentiation. An implication of this
hypothesis is that downregulation of some miRNAs might play a
causal role in the generation or maintenance of tumours. Epithelial
cells affected in C. elegans lin-4 and let-7 miRNA mutants generate a
stem-cell-like lineage, dividing to produce daughters that,
like themselves, divide rather than differentiate>”. We speculate
that abnormalities in miRNA expression might similarly contribute
to the generation or maintenance of ‘cancer stem cells, recently
proposed to be responsible for cancerous growth in both leukaemias
and solid tumours*%.

sample-derived markers yielded a perfect classification of the mouse samples
(euclidean distance, k = 3). Mouse tumour T_MLUNG_5 (third column
from right) was occasionally classified as normal using other kNN
parameters (see Supplementary Information). ¢, HL-60 cells were treated
with all-trans retinoic acid (ATRA + ) or vehicle (—) for the indicated
number of days. A heatmap of miRNA expression from a representative
experiment is shown.

METHODS

Samples. Information regarding samples is available in Supplementary Table 2.
Total RNAs were prepared from tissues or cell lines using TRIzol (Invitrogen), as
described*, and in compliance with IRB protocols. Leukaemia bone marrow
mononuclear cells were collected from patients treated at St. Jude Children’s
Research Hospital and at the Dana-Farber Cancer Institute, and their immuno-
phenotype and genotype were determined as previously described***. Normal
mouse lung and mouse lung cancer samples were collected from K-Ras™*’ mice
and genotyped as described”. Lungs from four- to five-month-old mice were
inflated with phosphate-buffered saline before removal. Individual lung
tumours and normal lungs were dissected and immediately frozen on dry ice
before RNA preparation. HL-60 cells were plated at 1.5 X 10° cellsml™" and
induced to differentiate using 1 pM all-trans retinoic acid (Sigma; in ethanol).
Cells were harvested after 1, 3 and 5 days. Culturing conditions for other cells are
detailed in the Supplementary Information.

miRNA labelling. Target preparation from total RNA followed the described
procedure’’, with modifications. Briefly, two synthetic pre-labelling-control
RNA oligonucleotides (5'-pCAGUCAGUCAGUCAGUCAGUCAG-3', and 5'-
pGACCUCCAUGUAAACGUACAA-3', Dharmacon) were used to control for
target preparation efficiency. They were each spiked at 3 fmoles per pg total RNA.
Small RNAs (18-26 nucleotides) were recovered from 1-10pg total RNA
through denaturing polyacrylamide gel purification. Small RNAs were
adaptor-ligated sequentially on the 3'-end and 5'-end using T4 RNA ligase
(Amersham Biosciences). After reverse-transcription using adaptor-specific
primers, products were PCR-amplified (95 °C for 40's; 50 °C for 30s; 72 °C for
30s; 18 cycles for 10 pg starting total RNA) using a 3'-primer 5 -TACTGG
AATTCGCGGTTA-3' and 5' primer 5'-biotin-CAACGGAATTCCTCACTAAA-
3' (IDT). For side-by-side comparison of bead detection and the glass micro-
array, a 5'-Alexa-532-modified primer was used for compatibility with the glass
microarray. PCR products were precipitated and dissolved in 66 pl TE buffer
(10mM TrisHCl pH8.0, 1mM EDTA) containing two biotinylated post-
labelling-control oligonucleotides (100 fmoles of FVR506, 25fmoles
PTG20210; see Supplementary Table 1).

Bead-based detection. miRNA capture probes were 5 -amino-modified oligo-
nucleotides with a 6-carbon linker (IDT). Capture probes for miRNAs and
controls were divided into three sets (see Supplementary Table 1). To profile a
sample with all probes, three assays were performed on the sample, each using
one of the three probe sets. Probes were conjugated to carboxylated xMAP beads
(Luminex Corporation) in 96-well plates, following the manufacturer’s protocol.
For each probe set, 3 pl of every probe—bead conjugate was mixed into 1 ml of
1.5 X TMAC (4.5M tetramethylammonium chloride, 0.15% sarkosyl, 75 mM
Tris-HCl pH 8.0, 6 mM EDTA). Samples were hybridized in a 96-well plate, with
two mock PCR samples (using water as template) in each plate as a background
control. Hybridization was carried out overnight at 50 °C with 33 pl of the bead
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mixture and 15 pl of labelled material. Beads were spun down, resuspended in
1 X TMAC containing 10 pgml™" streptavidin-phycoerythrin (Molecular
Probes) and incubated at 50 °C for 10 min before data acquisition on a Luminex
100IS machine. Median fluorescence intensity values were measured.
Computational analyses. Profiling data were first scaled according to the post-
labelling-controls and then the pre-labelling-controls, in order to normalize
readings from different probe/bead sets for the same sample, and to normalize
for the labelling efficiency, respectively, as detailed in Supplementary Methods.
Data were thresholded at 32 and log,-transformed. Hierarchical clustering was
performed with average linkage and Pearson correlation. Before clustering, data
were filtered to eliminate genes with expression lower than 7.25 (on a log, scale)
in all samples. Next, all features were centred and normalized to a mean of 0 and
a standard deviation of 1. k-nearest-neighbour classification of normal versus
tumour samples was performed with k = 3 in the selected feature space using
euclidean distance measure. Note that different metrics were used for clustering
and normal/tumour classification. Features were selected for the distinction
between all normal samples versus all tumours (for colon, kidney, prostate,
uterus, lung and breast; P < 0.05 after Bonferroni correction). P values were
calculated using a variance-thresholded t-test with a minimal standard deviation
of 0.75, while treating the tissue type as a confounding variable. Multi-class
predictions of poorly differentiated tumours were performed using the prob-
abilistic neural network algorithm, a gaussian-weighted nearest neighbour
method. For each test sample, the tissue type that had the highest probability
in multiple one-tissue-versus-the-rest predictions was assigned. Feature number
and the gaussian width were optimized on the basis of leave-one-out cross-
validations on the training data set. Features were selected on the basis of the
variance-thresholded t-test score, requiring equal numbers of up- and down-
regulated features. Distances were based on the cosine in the selected feature
space.

Expression data. miRNA expression data have been submitted to the Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo) with the
series accession number GSE2564. mRNA expression data were published
previously’, and are available together with miRNA expression data at http://
www.broad.mit.edu/cancer/pub/miGCM.
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