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Abstract: Aberrant gene expression is critical for
tumor initiation and progression. However, we lack a
comprehensive understanding of all genes that are
aberrantly expressed in human cancer. Recently, DNA
microarrays have been used to obtain global views of
human cancer gene expression and to identify genetic
markers that might be important for diagnosis and

therapy. We review clinical applications of these novel
tools, discuss some important recent studies, identify
promising avenues of research in this emerging field of
study, and discuss the likely impact that expression
profiling will have on clinical oncology.
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CANCER IS A genetic malady, mostly resulting from
acquired mutations and epigenetic changes that influ-

ence gene expression.1,2 Accordingly, a major focus in
cancer research is identifying genetic markers that can be
used for precise diagnosis or therapy. Over the last half-
century, investigators have used reductionism to discover
such markers through the study of simple genetic changes
like balanced chromosomal translocations.3 For example,
fundamental insights into the nature of the bcr-abl gene
translocation product resulted in the precise molecular
classification of chronic myelogenous leukemia and re-
cently led to the development of the molecularly targeted
tyrosine kinase inhibitor STI571 (Gleevec; Novartis, East
Hanover, NJ) for the treatment of this disease.4,5

Ninety percent of human cancers, however, are epithelial
in origin and display marked aneuploidy, multiple gene
amplifications and deletions, and genetic instability, making
resulting downstream effects difficult to study with tradi-
tional methods.6 Because this complexity probably explains
the clinical diversity of histologically similar tumors, a
comprehensive understanding of the genetic alterations
present in all tumors is required.

The initial sequencing of the human genome,7,8 coupled
with technologic advances, now make it possible to embrace
the genetic complexity of common human cancers in a global
fashion. Tools are currently available, or are being developed,
for the identification of all changes that take place in cancer at

the DNA, RNA, and protein levels. In particular, the use of
DNA microarrays for the comprehensive analysis of RNA
expression (expression profiling) in human tumor samples
holds much promise. The uses of DNA microarrays for
fundamental biomedical research have recently been reviewed
elsewhere.9 We discuss clinical applications of DNA microar-
rays and identify future directions and challenges in applying
these new tools to cancer medicine.

OVERVIEW OF MICROARRAY-BASED CANCER GENE
EXPRESSION PROFILING

Gene expression studies in human cancer can identify
genetic markers of malignant transformation. Traditionally,
such studies were limited to examining a few genes at a
time. However, different methods are now available for
large-scale gene expression analysis. Each has both advan-
tages and disadvantages. For example, differential dis-
play,10 serial analysis of gene expression,11 and representa-
tional differential analysis12 have all proven useful for
identifying genes expressed in human tumors. Although
these methods are powerful, they are technically difficult,
require large-scale DNA sequencing, and only allow for the
study of a few different biologic samples at one time.

In contrast, DNA microarray-based gene expression pro-
filing relies on nucleic acid hybridization and the use of
nucleic acid polymers, immobilized on a solid surface, as
probes for complementary gene sequences.13 Expression
profiling techniques have been used to simultaneously
monitor the expression of thousands of genes from human
tumor samples. They are relatively easy to use and can be
applied to large numbers of samples in parallel. Although a
number of competing microarray technologies exist, two
platforms (cDNA and oligonucleotide microarrays) are
currently used by a majority of investigators and both are
effective (Fig 1).

With cDNA arrays, polymerase chain reaction products
of cDNA clone inserts representing genes of interest are
spotted systematically on nitrocellulose filters or glass
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slides.14 Spotted arrays are constructed using cDNA collec-
tions (ie, libraries) that can be focused on genes expressed
in a particular context or cell type (eg, the lymphochip,
which contains genes known to be important in lympho-
cyte biology). The primary benefit of spotted arrays is
that they can be made by individual investigators, are
easily customizable, and do not require a priori knowl-
edge of cDNA sequence because clones can be used and
then sequenced later if of interest. Practically speaking,
however, managing large clone libraries can be a daunt-
ing task for most laboratories, and making high-quality
arrays can be difficult.

Oligonucleotide microarrays differ in a number of impor-
tant ways. Oligonucleotide probes for different genes can be
deposited or synthesized directly on the surface of a silicon
wafer in a patterned manner.15 Oligonucleotides offer
greater specificity than cDNAs, because they can be tailored
to minimize chances of cross-hybridization, and sequences
up to 60 nucleotides have been used effectively.16 Major
advantages of this approach include uniformity of probe
length and the ability to discern splice variants. Until
recently, the design of specific oligonucleotides has been
limited by sequence availability, but the initial sequencing
of the human genome should make probe design easier in
the future. Another advantage particular to the commonly
used Affymetrix GeneChip system (Affymetrix, Santa
Clara, CA) is the ability to recover samples after hybridiza-

tion to a chip. This allows for a single biologic sample to be
sequentially hybridized to multiple arrays, a considerable
advantage when dealing with limited biologic material.

The hybridization of a test sample to an array can be
detected in one of two ways. cDNA microarrays are
commonly queried simultaneously with cDNAs derived
from experimental and reference RNA samples that have
been differentially labeled with two fluorophores to allow
for the quantification of differential gene expression, and
expression values are reported as ratios between two fluo-
rescent values. Alternatively, the Affymetrix oligonucleo-
tide system uses a single color fluorescent label, where
experimental mRNA is enzymatically amplified, biotin-
labeled for detection, hybridized to the wafer, and detected
through the binding of a fluorescent compound (streptavi-
din-phycoerythrin) (Fig 1).

Advances in chip technology or design and decreasing
costs are making affordable, commercially available whole
genome arrays commonplace. The major challenge now is
the effective application of these tools to clinical questions.
Outlined below are a number of experimental consider-
ations that must be kept in mind before embarking on such
clinical studies.

Biologic Material

Microarray experiments require between 10 and 40 �g of
high-quality RNA, corresponding roughly to a 100-mm3

piece of tissue. Ideally, whole-tumor specimens should be
snap-frozen in liquid nitrogen within half an hour of
surgical resection and stored at �80°C or colder to prevent
RNA degradation. However, this recommendation is guided
in part by practicality because changes in some mRNA
species have been noted even a few minutes after surgical
manipulation and devascularization of tissue.17 Unfortu-
nately, methods do not yet exist for obtaining sufficient
RNA from formalin-fixed tissues for these types of exper-
iments. These requirements thus pose certain challenges.
Biopsy specimens available for study tend to be small,
increasingly so with earlier detection of certain cancer types
and minimally invasive biopsy methods (ie, fine-needle
aspiration). RNA quality varies dramatically in specimens
from established tumor banks. In addition, clinical informa-
tion can be difficult to obtain in a retrospective fashion,
because of incomplete record keeping and patient confiden-
tiality issues.

Currently, these considerations present major limitations
in most clinical settings. There is a critical need for the
prospective identification, collection, and storage of high-
quality tissue that is broadly available to qualified investi-
gators. Ideally, collected tissues should be linked to clinical
information in the context of ongoing clinical trials, while

Fig 1. Oligonucleotide versus cDNA microarrays. Oligonucleotide mi-
croarrays: direct synthesis or deposition of oligonucleotides onto solid
surface and single-color readout of gene expression from a test sample.
CDNA microarrays: deposition of polymerase chain reaction products from
cDNA libraries onto a solid surface and simultaneous, two-color readout of
gene expression in test and reference samples.
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safeguarding patient confidentiality. Such resources would
allow for correlative studies of tumor gene expression
profiles and natural history, response to therapy, survival,
and other clinically meaningful end points.

Tumor Sampling

Tumors are heterogeneous mixtures of different cell
types, including malignant cells with varying degrees of
differentiation, stromal elements, blood vessels, and
inflammatory cells. Two tumors with similar clinical
stages can vary markedly in grade and in relative pro-
portions of different elements (eg, prostatic adenocarci-
noma). Tumors of different grades might potentially
differ in gene expression, and different markers can be
expressed either by malignant cells or by other cellular
elements. Because this heterogeneity can complicate the
interpretation of gene expression studies, sample selec-
tion is an important issue.

The most obvious method for sample selection involves
careful histopathologic examination of specimens before
microarray analysis. In addition, numerous groups are
attempting to focus on the malignant components of this
heterogeneous cellular mix using a variety of microdissec-
tion techniques. Laser capture microdissection allows for
the isolation of individual cells from a tumor section and has
been used to isolate cancer cell RNA for microarray
studies.18,19 However, it is difficult to obtain adequate
amounts of high-quality RNA for expression profiling with
this technique, thus limiting its utility. Further refinement of
this and other approaches to isolating pure-cell populations
should be encouraged. However, a theoretical limitation of
focusing only on malignant tumor components relates to
the growing appreciation that tumor-stroma, tumor-endo-
thelial, and tumor-immune cell interactions play critical
roles in tumor progression. Expression signatures from
nonmalignant cells may also be informative. For these
reasons, we currently favor using whole tumors enriched
in malignant cells.

Variability

Multiple sources of variation that must be understood in
evaluating any microarray experiment include the follow-
ing: (1) varying cellular composition among tumors, (2)
genetic heterogeneity within tumors due to selection and
genomic instability, (3) differences in sample preparation,
(4) nonspecific cross-hybridization of probes, and (5) dif-
ferences between individual microarrays.

In general, biologic variation is the major source of
variation in gene expression experiments. Increasing the
sample number can help in understanding the range of
biologic variation in an experiment. Variation due to tech-

nical factors can be addressed by replicating sample prep-
aration or array hybridization.20 Although most high
throughput expression profiling centers have informal cri-
teria for what constitutes bad data, there are no generally
accepted guidelines.

Data Analysis

Gene expression studies pose many challenges for data
organization, storage, and analysis.21,22 Present technology
allows for the evaluation of nearly the entire genome from
a single biologic sample. Databases are required for efficient
storage and retrieval of this information, but most biomed-
ical laboratories are not set up to handle this type of data.
Furthermore, there are no standards for the design and
implementation of expression databases. These limitations
presently make it difficult to compare datasets generated in
different laboratories.

To date, the computational analysis of gene expression
data has centered on two approaches (Fig 2). Unsupervised
learning, or clustering, involves the aggregation of a diverse
collection of data into clusters based on different features in
a data set.23,24 For example, one could divide a group of
people into clusters based on any combination of eye color,
waist size, or height. Similarly, one can gather data about
the various expressed genes in a collection of tumor samples

Fig 2. Unsupervised versus supervised learning. Unsupervised learning:
multiple tumor samples are clustered into groups based on overall similarity
of their gene expression profiles. This approach is useful for discovering
previously unappreciated relationships. Supervised learning: multiple tumor
samples from different known classes are used to train a model capable of
classifying unknown samples. This model is then applied to a test set for class
label assignment.
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and then cluster the samples as best as possible into groups
based on the similarity of their aggregate expression pro-
files. Alternatively, one could cluster genes across all
samples, to identify genes that share similar patterns of
expression in varying biologic contexts. Such approaches
have the advantage of being unbiased and allow for the
identification of structure in a complex data set without
making any a priori assumptions. However, because
many different relationships are possible in a complex
data set, the predominant structure uncovered by cluster-
ing may not necessarily reflect clinical or biologic
distinctions of interest.

In contrast, supervised learning incorporates the knowl-
edge of class label information to make distinctions of
interest. A training data set is used to select those features
that best make a distinction. These features are then applied
to an independent test data set to validate the ability of
selected features to make that distinction. For example, one
could select a subset of expressed genes that are best able to
distinguish between two cancer types and build a computa-
tional model that uses these selected genes to sort an
independent, unlabelled collection of those tumor types into
the two groups of interest. However, supervised learning is
dependent on accurate sample labels, which can be an issue
given the limitations of histopathologic cancer diagnosis.

Sometimes, results from unsupervised and supervised
learning on a single data set can overlap, but this does not
have to be the case. An important issue with either analytic
approach is that of statistical significance of observed
correlations. A typical microarray experiment yields expres-
sion data for thousands of genes from a relatively small
number of samples, and gene-class correlations, therefore,
can be revealed by chance alone. This issue can be ad-
dressed by collecting more samples for each class studied,
but this is often difficult with clinical cancer samples.
Another approach is to perform exploratory data analysis on
an initial data set and apply findings to an independent test
set. Findings confirmed in this fashion are less likely a result
of chance. Permutation testing, which involves randomly
permuting class labels and determining gene-class correla-
tions, has also been used to determine statistical signifi-
cance. Observed gene-class correlations that are stronger
than those seen in permuted data are considered statistically
significant.25,26

CLINICAL APPLICATION OF MICROARRAYS

A number of different tumor types have been studied
using DNA microarrays. Most reports use expression pro-
filing as a screen to identify differentially expressed genes
in malignant tissue,27-39 and space constraints prevent a full
discussion of all studies performed to date. However,

several themes have emerged from a few studies that
suggest a clinical use for these tools, apart from biologic
investigation, as discussed below.

Cancer Diagnosis

The use of expression profiling for cancer diagnosis was
recently demonstrated using oligonucleotide microarrays to
study the expression of 6,817 human genes in 72 acute
leukemia samples.40 Using unsupervised learning, leukemia
samples are neatly clustered into the known subsets of acute
myelogenous leukemia (AML) and acute lymphocytic leu-
kemia (ALL) solely on the basis of gene expression. In
addition, using supervised learning, gene sets that are
differentially expressed in AML and ALL were used to
correctly classify a group of unknown samples into the
correct categories, again solely on the basis of gene expres-
sion. Significantly, many markers that were both known,
such as myeloperoxidase and terminal transferase, and
unknown, were useful for making this distinction.

Although the distinction between AML and ALL gener-
ally is not clinically difficult using modern histopathology
and cell surface phenotypes, this study provided strong
evidence that tumor expression profiles can be used for
cancer classification. However, it also raised a number of
questions. AML and ALL are derived from distinct cellular
precursors likely accounting for the robust expression sig-
natures that distinguish these two cancers. More highly
related cancers might be difficult to distinguish using this
approach. In addition, class discovery in this case required
prior biologic knowledge of AML and ALL to make sense
of the observed clusters. The interpretation of new classes
discovered with clustering is more difficult in the absence of
known biologic or clinical correlates.

More recently, Armstrong et al41 used both unsupervised
and supervised learning to establish the globally distinct
nature of mixed-lineage leukemia, a leukemia subset with a
decidedly unfavorable prognosis that is defined by a chro-
mosomal translocation involving the mixed-lineage leuke-
mia gene. Importantly, molecular markers differentially
expressed by this leukemia compared with both ALL and
AML, such as the receptor tyrosine kinase FLT3, immedi-
ately suggest novel strategies for molecularly targeted
treatment in this treatment-refractory cancer.

Expression-based class discovery has also been used for
solid tumors. Bittner et al42 studied 31 patients with malig-
nant melanoma, for which there are no molecularly defined
subsets. Cluster analysis defined two putative subsets, and
they were able to define marker genes that were differen-
tially expressed between these two subsets. They noted that
one of these gene sets was differentially expressed in uveal
melanoma cell lines with more aggressive tissue invasion
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potential, as measured by the in vitro formation of primitive
tubular networks. This suggested that primary cancers
might be less or more invasive depending on the subset to
which they belong. Using a variety of in vitro assays, they
demonstrated that subset membership was indeed associated
with differing tissue invasion potential. This study demon-
strated that class discovery is possible in the absence of
prior knowledge and that such findings can be validated
using cancer cell line models. Unfortunately, the patients in
this study had uniformly poor prognosis, and it was not
possible to define patient subsets with different natural
histories. Future work should determine whether these new
subsets describe tumors with distinct natural histories.

Two additional studies have explored expression-based
breast cancer classification. Perou et al43 reported the
molecular classification of 65 breast adenocarcinoma spec-
imens from 42 individuals. Hierarchical cluster analysis
defined three separate subtypes in this highly heterogeneous
tumor class, based on patterns of gene expression. One
subtype was known (Erb-B2� cancers), and two others
were previously unknown (estrogen receptor–positive/lumi-
nal-like cancers and basal-like cancers). The clinical signif-
icance of the two novel cancer subsets remains an open
question. A unique feature of this study was the presence of
20 primary tumors that were biopsied before and after a
16-week course of doxorubicin chemotherapy and two
primary/lymph node metastases pairs. Using clustering,
they showed that paired samples are more highly related to
each other than to tumors from other individuals, despite
chemotherapy or metastatic evolution. This study also
identified gene expression correlates of different cellular
features of these tumors. For example, a number of genes
known to play roles in cellular proliferation were coordi-
nately expressed by different tumors, and their expression
could be correlated with mitotic index. They also identified
eight independent gene clusters that seemed to reflect
contributions of specific cell types present within tumors
such as endothelial cells or B lymphocytes. This finding is
of considerable interest, because some investigators have
proposed whole tumor studies followed by computational
techniques to infer the transcriptional fingerprint of each
cellular component of a tumor. Such in silico studies have
the potential to reveal the complex molecular and cellular
interactions that drive tumor growth without the need for
separation of tumor components. More recently, this group
has extended its findings to a larger set of tumors.44

Hedenfalk et al45 used expression profiling to study seven
spontaneous and 15 hereditary breast adenocarcinomas with
mutations in either BRCA1 or BRCA2. Using supervised
learning, they were able to identify a number of differen-
tially expressed genes between BRCA1-mutated and

BRCA2-mutated tumors and use these genes to accurately
categorize these samples. Cyclin D1, an important cell cycle
regulator known to be overexpressed in certain breast
cancers, was one of the genes with increased expression in
BRCA2 mutation–positive tumors, and this finding was
confirmed using immunohistochemistry. Interestingly, one
spontaneous tumor was classified as having a BRCA1-
mutated phenotype. Direct sequencing of the BRCA1 gene
in this patient showed no mutation, but the promoter of this
gene showed aberrant methylation resulting in silencing of
gene expression. Because epigenetic events can be impor-
tant in oncogenesis, this intriguing finding points to the use
of expression profiling for identifying such events in the
absence of germline information.

Most published studies have applied expression profiling
to single cancer types. However, recent efforts have focused
on developing multiclass classifiers capable of distinguish-
ing between multiple common human malignancies. This
approach holds much promise for the uniform, molecular,
and database-driven classification of all human tumors.46-48

For example, we have trained a multiclass molecular clas-
sifier capable of predicting the identity of primary and
metastatic cancers from 14 different tumor classes with high
accuracy. Interestingly, poorly differentiated cancers have
dramatically different gene expression profiles compared
with their well-differentiated counterparts and cannot be
classified accurately, suggesting that these tumors are dis-
tinct entities. These findings imply that the expression-
based diagnosis of some clinically problematic samples (ie,
metastases) is feasible, whereas other histopathologically
difficult samples (ie, poorly-differentiated cancers) might
elude classification by site of origin.

In addition, there is much clinical heterogeneity that is
not explained using traditional histopathologic distinctions,
such as site of origin. An alternate approach is to ignore
traditional distinctions and try to classify tumors using
distinct gene expression patterns. For example, Hanahan
and Weinberg49 have proposed that cancer arises from the
cooperative dysfunction of distinct biologic pathways re-
sponsible for a variety of physiologic functions such as
growth, programmed cell death, or angiogenesis. An in-
triguing question is whether a molecular taxonomy of
cancer such as this exists, based purely on tumor gene
expression rather than on histopathologic appearance.
This type of taxonomy might reveal unexpected relation-
ships between individual tumors. For example, using
expression-based molecular descriptions, an individual
colonic adenocarcinoma might prove to be more related
to a given pancreatic adenocarcinoma rather than to
another colorectal tumor based on molecular patterns.
Additionally, the presence or absence of different molec-
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ular pathways might correlate with differential outcome
within individual classes.

Outcome Prediction

Presently, it is difficult to predict whether chemotherapy
will be effective for individual patients. DNA microarrays
offer the opportunity to ask whether tumor expression
profiles can be used to predict chemosensitivity. The NCI60
panel of 60 cancer cell lines is used extensively at the
National Cancer Institute as a screen for drug sensitivity.
These lines have been treated with more than 70,000 agents,
one at a time and independently. Scherf et al50 attempted to
correlate gene expression and drug sensitivity patterns for
118 drugs with known mechanisms of action in the NCI60
panel using clustering. They described correlations between
the expression of certain genes with sensitivity or resistance
of the NCI60 panel to several drugs. For example, dihydro-
pyrimidine dehydrogenase expression, the rate-limiting en-
zyme in fluorouracil metabolism, was inversely correlated
with sensitivity to fluorouracil. More recently, Staunton et
al51 used supervised learning to demonstrate that statisti-
cally significant prediction of chemosensitivity is possible
for some compounds using this NCI60 cell-line system.

These findings are intriguing but their interpretation is
complicated by a number of issues. Cell lines were neces-
sarily used for these studies but are highly selected entities.
Cell-line studies also ignore the potential role of the tumor
microenvironment in drug resistance. Additionally, host
pharmacokinetics and pharmacodynamics can govern in
vivo responses to chemotherapy, and posttranslational
mechanisms of drug resistance are not directly measured
with DNA microarrays. It remains unclear whether in vitro
drug sensitivity correlations can be validated in clinical
studies. It is likely that whole-tumor expression profiling
will only partially predict chemotherapy responses. How-

ever, when coupled with germ-line analysis of sequence
variation within genes important for drug metabolism,
expression profiling might provide important information
regarding the susceptibility of a tumor to a given drug
assuming optimal delivery of the agent.

Nevertheless, early attempts to predict treatment outcome
in cancer patients seem encouraging. Investigators have
demonstrated the utility of using pretreatment gene expres-
sion profiling to determine prognosis. In a retrospective
study of 38 patients with diffuse large B-cell lymphoma
(DLBCL), Alizadeh et al52 clustered cDNA microarray data
to define new subtypes of this lymphoma. They found that
these subtypes differentially express genes that correlate
with either an activated peripheral-blood B-cell (AB) or a
normal germinal center B-cell (GCB) phenotype. Because
all patients were uniformly treated with anthracycline-based
chemotherapy, they then correlated treatment outcome with
these two subsets. Although overall 5-year survival was
52%, 76% of GCB DLBCL patients were alive at 5 years
compared with 16% of AB DLBCL patients. They also
demonstrated that expression profiling can add value to
existing clinical prognostic indices. In considering 24 pa-
tients with low-risk DLBCL tumors, as defined by the
International Prognostic Index ([IPI] score 0 to 2), the AB
subtype was again at higher risk of dying despite standard
treatment in comparison with those with the GCB subtype
(Fig 3). Although a small study, this work was the first to
demonstrate expression-based correlates of outcome. Shipp
et al53 have also reported the use of expression profiling to
substratify IPI low- and low-intermediate–risk DLBCL
patients into subgroups with markedly differing survival
(5-year overall survival, 75% v 32%).53 These findings
confirm that expression profiles should be useful for out-
come prediction in lymphoma patients beyond currently
available clinical criteria.

Fig 3. Kaplan-Meier plots. DLBCL subsets identified by (a) gene expression profiling and (b) according to their International Prognostic Index (IPI) scores.
Low clinical risk: IPI 0-2, high clinical risk: IPI 3-5. (c) Low clinical risk DLBCL patients grouped on the basis of their gene expression profiles. Reprinted with
permission from Nature 403:503-511 copyright 2000, Macmillan Magazines, Ltd.
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Expression-based outcome prediction is now being ex-
plored in a variety of other cancer types.54-57 For example,
Dhanasekaran et al58 used cDNA arrays to examine the gene
expression profiles of 50 normal and neoplastic prostate
specimens and identify markers that were differentially
expressed in tumor versus normal tissue. Hepsin, a trans-
membrane protease, and pim-1, a serine/threonine kinase,
were both found to be overexpressed in prostate cancer at
the RNA level. They then used tissue microarrays to
validate this marker at the protein level in 738 prostate
tissue and tumor samples. Interestingly, absence of pim-1
expression in prostatic adenocarcinoma was correlated with
a greater risk of prostate-specific antigen failure after radical
prostatectomy independent of Gleason score.

In addition, Pomeroy et al59 studied the use of gene
expression profiling for classification and outcome predic-
tion in childhood medulloblastoma, a tumor type with
highly variable responses to chemotherapy and radiation.
Using gene expression profiles from 60 similarly treated
patients for whom biopsies were obtained before treatment,
a classifier capable of predicting outcome was generated.
Patients who were predicted to be survivors had a 5-year
overall survival of 80% compared with 17% for patients
predicted to have poor outcome. Notably, this outcome
predictor outperformed all other available measures, includ-
ing clinical stage and Trk-C status, a single gene marker that
has prognostic value.60

Because a major determinant of poor outcome is meta-
static spread, MacDonald et al61 used expression profiling
of 23 nonmetastatic and metastatic medulloblastoma spec-
imens to identify 85 genes that are differentially expressed
between these tumor states. They found that platelet-derived
growth factor receptor � and members of the downstream
RAS/mitogen-activated protein kinase signal transduction
pathway are upregulated in metastatic tumors. Importantly,
inhibition of signaling through this receptor pathway inhib-
ited tumor cell migration in vitro, again pointing to the
power of expression profiling in clinical specimens for
revealing novel molecular treatment targets.61

FUTURE CHALLENGES

Comprehensive Cancer Profiling

Despite early progress, cancer expression studies have
examined relatively small numbers of clinical specimens,
and there has not been sufficient time to reproduce many
findings in this new field. Recent reports demonstrate the
use of expression profiling for addressing important ques-
tions in clinical oncology, but many future challenges
remain, including large-scale profiling across the spectrum
of tumor class, stage, and grade.

Future studies in expression-based cancer classification
should be coupled with clinically meaningful end points,
such as survival. Presumably, genetic markers that correlate
with different phenotypes or clinical outcomes will be
useful for both prognostication and understanding the mo-
lecular basis of disease progression. Prospective clinical
studies will be required to fully explore the possibility that
all cancers can be divided into molecularly defined subtypes
using expression profiles with variable natural history and
response to treatment.

For most studies, the availability of sufficient numbers of
patient samples is presently a limiting factor. Future work
will require large numbers of tumors annotated with clinical
information and might also include microdissected speci-
mens. Given the costs inherent in such an undertaking and
the rarity of certain clinical specimens, this makes perform-
ing definitive large studies difficult. Large-scale, coopera-
tive expression profiling efforts, suitably linked with exist-
ing clinical trials groups, might represent attractive
alternatives. Data generated from such a pooled effort could
be made publicly available and would allow for systematic
molecular diagnosis, classification, and prognostication.
Ideally, these studies should be coupled with ongoing
efforts to understand molecular changes that are present at
the DNA and protein levels in malignant tissue. Microarray-
based comparative genomic hybridization, tissue microar-
rays, and emerging proteomic technologies are high-
throughput methods that hold much promise, and studies
that integrate such approaches with gene expression profil-
ing should yield truly comprehensive molecular profiles of
human cancer.62-65

Data Mining

Despite initial sequencing of the human genome, we still
have only a rudimentary knowledge of the physiologic roles
of most genes. This represents a significant bottleneck in
linking gene expression profiles to molecular mechanisms
of transformation. There is a need for integrated databases,
with complete annotation, comprehensive gene descrip-
tions, and links to relevant genetic and proteomic informa-
tion. In addition, as expression studies are performed in
various species, integration of this information should prove
as illuminating as inter-species gene sequence comparisons.
Such databases will allow for an understanding of gene
expression in the context of all other available biologic
information. Although a number of commercial sources
have started to create such databases, there is much room for
improvement.

As expression profiling technologies mature, the identi-
fication of statistically significant patterns from relatively
sparse and noisy data sets remains a major challenge.
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Although sophisticated data-mining techniques are already
being used to analyze expression data, most of these
techniques achieve robust performance with a large number
of samples and a small number of variables. However, gene
expression data sets generally contain small numbers of
samples, many profiled genes, and multiple sources of
variation. Future advances will require adapting analytic
and statistical techniques to this type of data.

Another important area relates to the integration of data
sets generated in different laboratories using different pro-
filing technologies. Many human cancer studies involve
valuable or rare clinical specimens and are difficult to
repeat. Ideally, one should be able to compare expression
data sets obtained in any center, at any time, using any
platform. However, this goal remains unrealized. Spotted
array data is usually reported as ratios between experimental
and control expression values and cannot be easily com-
pared with oligonucleotide microarray data. Multiple ex-
pression profiling technologies require more sophisticated
methods for data comparison and integration.

Drug Development

A major goal is the use of expression profiles to acceler-
ate and refine the clinical evaluation of chemotherapy drugs.
New drugs are traditionally evaluated for efficacy in clini-
cally defined cancer types irrespective of mechanisms of
transformation. However, a common theme is the low
response rates seen in many early clinical studies. This often
leads to the branding of a new agent as ineffective. An
exciting prospect is the coupling of gene expression profil-
ing with clinical studies of new agents. Such efforts could
potentially turn negative studies into positive studies through
the identification of gene expression correlates of drug respon-
siveness and resistance in individual patients. These markers
might then be used to prospectively identify populations of
patients likely to respond to the agent. Far fewer patients would
be required for subsequent clinical trials to prove efficacy,
streamlining the drug development process.

Microarrays in the Clinic

Microarrays are often viewed as screens to identify
markers for traditional diagnostics, such as immunohisto-
chemistry, for routine clinical use. However, immunohisto-
chemistry is generally nonquantitative, identification of
antibodies can be laborious, and multiplexing is not easy.
More sophisticated and high-throughput validation methods
are required. An alternative view would be to actually use
microarrays in the clinic. This would require either custom
arrays for different indications or whole genome analysis
of every sample coupled with an analysis of relevant
genes. As commercially available, low-cost, technically
simple arrays and easy-to-use analytic software become
available, their routine clinical use can be explored. In
addition, the resulting data could populate large expres-
sion databases that would serve as growing, centralized,
and standardized references to which new cancer samples
could be compared. The feasibility of routine clinical use
of microarrays, however, has yet to be established.

In conclusion, expression profiling is ripe for application to
a multitude of clinical problems. So, what can the practicing
oncologist expect in the future? Diagnosis by tumor gene
expression database is conceivable. Encoded in this informa-
tion would be a pathogenetic description of a tumor, its likely
natural history, and its chemosensitivity. Additionally, new
drug development and evaluation will likely be accelerated
both through the identification of novel molecular targets and
through the selection of patients for clinical trials with specific
tumor gene expression profiles. Although many challenges
remain ahead, whole genome approaches are poised to change
the face of clinical oncology.
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