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Abstract 

 

A statistical methodology for estimating dataset size requirements for 

classifying microarray data using learning curves is introduced. The goal is 

to use existing classification results to estimate dataset size requirements 

for future classification experiments and to evaluate the gain in accuracy 

and significance of classifiers built with additional data. The method is 

based on fitting inverse power-law models to construct empirical learning 

curves. It also includes a permutation test procedure to assess the 

statistical significance of classification performance for a given dataset 

size. This procedure is applied to several molecular classification 

problems representing a broad spectrum of levels of complexity. 
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1. Introduction 

Over the last few years the routine use of DNA microarrays has made possible the 

creation of large datasets of molecular information characterizing complex biological 

systems. Molecular classification approaches based on machine learning algorithms 

applied to DNA microarray data have been shown to have statistical and clinical 

relevance for a variety of tumor types: Leukemia [Golub et al. 1999], Lymphoma [Shipp 

et al. 2001], Brain cancer [Pomeroy et al. 2002], Lung cancer [Bhattacharjee et al. 2001] 

and the classification of multiple primary tumors [Ramaswamy et al. 2001, 2002, Yeang 

et al. 2001]. In this context, after having obtained initial or preliminary classification 

results for a given biological system, one is often left pondering the possibility of 

embarking on a larger and more systematic study using additional samples. This is 

usually the case when one tries to improve the accuracy of the original classifier or to 

provide a more rigorous statistical validation of the existing prediction results. As the 

process of obtaining additional biological samples is often expensive, involved, and time 

consuming it is desirable to be able to estimate the performance of a classifier for yet 

unseen larger dataset sizes. In this situation one has to address two sets of questions:  

 

1. For a given number of samples, how significant is the performance of a classifier, 

i.e. are the results better than what one would expect by chance? 

 

2. If we know the answers to (1) for a range of dataset sizes, can we predict the 

performance of the classifier when trained with additional samples? Will the 
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accuracy of the classifier improve significantly? Is the effort to collect additional 

samples worthwhile? 

 

These two questions arise in other classification tasks with high dimensional data and 

few samples such as classifying and functional MRI images of patients with neural 

dysfunction [Golland et al. 2002]. In this paper we develop a methodology for assessing 

the significance of a classifier’s performance via a permutation test. We then fit an 

inverse power law model to construct a learning curve with error rates estimated from 

an existing dataset and use this learning curve to extrapolate error statistics for larger 

datasets. Power calculations [Adcock 1997] are a standard approach to estimate the 

number of data samples required. However, these approaches do not address our data 

set size estimation problem for two reasons.  First, the assumptions that the underlying 

data comes from a Gaussian distribution and independence of variables do not hold. 

Second, the question addressed by power calculations is: given a particular data set 

size how confident are we of our empirical error estimate. This is very different from 

asking how the error rate might decrease given more data.  

 

A non-trivial classifier changes its structure as more training data become available and 

therefore determining how the error rate might decrease becomes a problem of function 

extrapolation rather than convergence estimation. In this regard it is important not to 

confuse this problem with the more standard problem of estimating the confidence of an 

error estimate as a function of training set size: i.e. estimating the variance in an 

observed quantity, the error estimate, as a function of the number of measurements. In 
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general, this latter problem is addressed using power calculations or deviation bounds 

[Adcock 1997, Guyon et al. 1998]. These methods compute bounds or estimates of a 

given quantity’s deviation from its expected value as a function of the number of 

observations, or in this case, samples. Other methods study the variation produced by 

technical factors that can be addressed by experimental design or replicating sample 

preparation or array hybridization [Cheng and Wong 2001, Tseng et al. 2001, Kerr and 

Churchill 2001a,b]. There are also methods to model differential expression across 

experiments [Lee and Whitmore 2002] that assess the effect of replication and sample 

size in increasing the statistical power of ANOVA models. In the context of our problem, 

these approaches can only help to find bounds on the deviation between the 

misclassification error rate and its expected value as a function of the number of 

measurements, i.e., the realizations of the classifier for a given fixed classification 

dataset size. These standard error estimation methods are therefore not particularly 

useful in estimating the future performance of a classifier as a function of increasing 

dataset size with yet unseen additional data. We test our methodology on eight data 

sets which represent a range of difficulty or complexity of classification.  In some cases 

the distinction is quite dramatic, while in others it is more subtle. The examples are 

drawn from existing cancer classification data sets where discriminating the morphology 

of a sample (five sets) represents the "easier" end of the range, and predicting 

treatment outcome (three sets) lies at the other extreme. This hierarchy of difficulty will 

be reflected by the increase in the data set size requirements we estimate for these 

prediction problems. Our results give an indication of the minimal number of samples 
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that are needed to obtain significant performance data and to extrapolate the 

improvement one might get by building the classifier on a larger data set.  

 

In the next section, we will give some background on general approaches addressing 

the problem of estimating classifier performance and learning rates.  In Section 3, we 

describe our methodology in more detail. The results of applying our methodology to 

molecular classification problems are contained in Section 4. Section 5 summarizes the 

results of our tests.  The proofs and technical details have been collected in the 

Appendices. 
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Section 2. Background and General Approach 

 

The problem of estimating performance of a classifier for larger yet unseen sets of 

examples is a difficult analytical problem. It amounts to developing a model to compute 

how fast a given classifier “learns” or improves its “fitting” to the data as a function of 

dataset size.  

 

In machine learning, a natural way to study classification accuracy as a function of 

training set size is by building empirical scaling models called learning curves [Cortes et 

al. 1994].  Learning curves estimate the empirical error rate as a function of training set 

size for a given classifier and dataset. The advantage of this approach is that one 

avoids making assumptions about the distribution generating the dataset or the 

distribution of the classification errors. These learning curves are usually well 

characterized by inverse power-laws: 

 

banne += −α)( .           (1) 

 

The variables are the expected error rate ( )ne  given n  training samples, the learning 

rate , the decay rate a α , and the Bayes error  which is the minimum error rate 

achievable [Devroye et al. 1997, Duda et al. 2000]. Notice that the value of the 

constants 

b

α and ,,ba  will change according to the classifier and dataset being studied. 

Based on this scaling model, as the size of the dataset increases the misclassification 

error of a classifier will asymptotically approach b . This inverse power-law “learning” 
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behavior appears to be universal and is observed for many classifiers and types of 

datasets [Cortes et al. 1994, Shrager et al. 1988]. It is in fact observed not only in 

machine learning but also in human and animal learning [Anderson et al. 1983]. It is 

common to find empirical α  values around or less than 1. Besides its empirical 

prevalence, the power-law model can be motivated analytically and in some cases 

derived within the statistical mechanics approach to learning. The basic idea behind this 

approach is to formulate the average error as a set of equations which are then solved 

via a statistical mechanics replica approach [Hertz et al. 1991] involving integration over 

the parameters of the classifier. This approach has been applied to various 

classification algorithms such as Support Vector Machines [Dietrich et al. 2000], Large 

Margin Perceptrons [Opper et al. 1995], Adaline and other classifiers based upon 

Hebbian rules [Opper et al. 1990]. The resulting analysis of the classification errors for 

all of the above algorithms results in inverse power-laws of the form (1). 

 

Using this power-law scaling model as a basis, one can use the empirical error rates of 

a classifier over a range of training set sizes drawn from a dataset to fit an inverse-

power law model and then use this model to extrapolate the error rate to larger 

datasets. In order to make this a practical approach one also needs a statistical test for 

classifier significance as a function of training set size. The reason for this is that the 

inverse power-law model usually breaks down for small training set sizes where the 

model lacks enough data give accurate predictions. In this case, the error rates are 

large and not significant. If a given classifier’s results are not significant, then it is better 

to exclude them when fitting the learning curve. To directly address this problem we 
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have included a permutation test for the significance of a classifier as part of our 

methodology. This test compares the performance of the actual classifier with the 

performance of random classifiers trained to predict data whose target labels are 

permuted (randomized). A classifier that is able to “find” structure in the data and 

produce significant results should outperform its random counterparts most of the time.  

By fixing a significance level (0.05) we can produce an effective test to eliminate 

classifiers that are not significant from the fitting of the learning curve. Since the 

classifier performance usually improves with increasing training set size, this 

significance test also allows us to find the minimum number of samples that produced 

significant classifiers.  
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Section 3. Methodology for estimating error rates as a function of dataset size 

 

Given an arbitrary input dataset and classification algorithm the methodology we will 

describe provides the following, 

 

1) A measure of the statistical significance of the classifier built at each training set 

size. Based on this one can find the minimum training set size for which the 

classification performance of the classifiers is statistically significant. 

2) An analytic expression (power-law) of the error rate as a function of the 

increasing dataset size as well as similar expressions for the 25th and 75th error 

rate quantiles. These provide a means to extrapolate the error bar “envelope” for 

the error rate for larger yet unseen data sets.  

 

As described in Section 2, a significance test is needed to know at which training set 

size error rates are reliable enough to accurately extrapolate the error rate as a function 

of dataset size. The 25th and 75th quantiles are used to compute the analog of error bars 

for the estimated error rates as a function of dataset size.  Figure 1 shows a pictorial 

summary of the method. The procedure can be broken down into two main 

computational tasks, the first involving random sub-sampling (train/test) and a 

significance permutation test to evaluate the classifiers, and the second consisting of 

fitting learning curves to the error rates that passed the significance test. 
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We first describe the rationale behind fitting the learning curves. We want to fit the 

inverse power curves to the true average error and the true 25th and 75th quantile error 

of a classifier trained with various training set sizes. Our first step is to estimate the true 

average error rate and 25th and 75th error quantiles for a range of training set sizes. For 

a dataset of size  with fixed training set size, , and test set size, l ,  train/test 

realizations were constructed by sub-sampling the dataset. For each of these  

realizations an error rate  is computed and the average of the sequence 

l n n− 1T

1T

ine , { }
1,1 ,..., Tne,ne , 

∑
=

=
1

1
,

1

1 T

i
inn e

T
e , is used as an estimate of the true average error . The average error 

rate is an unbiased estimator of the true error rate of a classifier trained with  samples, 

ne 

n

 

 ,  nD

T

i
inTD eEeE

n
=∑

=

1

1
1

,
1

l
 

 

where  is the probability of classifying a new sample incorrectly when the 

classifier was trained with  samples (see Appendix 1a for proof and details). The 25

nD eE
n
 

n th 

and 75th percentile of the sequence { }
1,1, ,..., Tnn ee  were also fitted to an inverse power law 

so that we could also estimate the variation in error rates as a function of dataset size. 

The 25th and 75th percentile of the sequence { }
1,1, ,..., Tnn ee  are good approximations of 

the 25th and 75th quantiles of error rates of classifiers trained with n  samples (see 

Appendix 1c for proof and details). We did not use the variance of the error rates  

because this statistic is not an unbiased estimator of the variance of the error rate of 

classifiers trained with  samples and tested on a new sample. Indeed one can prove 

ine ,

n

 11



that the variance of this statistic is in general optimistic: the variance of the error rates 

 is less than the variance of classifiers trained with  samples and tested on a new 

sample (see Appendix 1b for proof and details).  

ine , n

to 

subject to

 

As described in the introduction, theoretical justifications for the use of inverse power 

laws can be made using analyses of classification accuracy based upon techniques 

from statistical mechanics [Opper et al. 1990, Opper et al. 1995] and approximation 

theory [Niyogi et al. 1996] as described in more detail in Appendix 2.  

 

Fitting the parameters of the learning curve by minimizing  

 

( )∑
=

− ≥−+
M

l
nlba

baeban l

1

2

,,
0,,min αα

α
  subject             

 

is a convex optimization problem when  is fixed. For a fixed , one can 

estimate

b b

 α anda  by taking logarithms and solving the following equivalent linear 

minimization problem  

 

( )∑
=

≥−+−
M

l
nlba

baebna l

1

2

,,
0,,      )ln()ln(min        αα

α
 

 

Solving this linear problem for various values of b  followed by line search gives us our 

estimate of     .  and ,, baα  
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As described in Section 2, the fitted learning curve does not extrapolate accurately 

when error rates are large and not statistically significant. This motivates a procedure to 

determine at what training set size the error rate is statistically significant when 

compared to the null hypothesis of the error rate of a random classifier 

{ }( ) { }( )nnnn yxyxxypyxyxxypH ,,...,,,|1  ,,...,,,|1         : 11110 −=== , 

the null hypothesis states that given a particular training set the conditional probability of 

a label being 1 or −  is equal. A random classifier is built from the same input data with 

the class labels of the data randomly permuted. This addresses the question of how 

well the classifier can learn the mapping  when the 

1

yxf →: y  values are random, 

. In essence we ask how well a classifier trained on randomly labeled data can 

classify correctly labeled data. The permutation procedure outlined above helps to 

answer this question. For each train/test realization for which an error rate  was 

computed we construct T  randomized realizations where the labels of the training set 

are randomly permuted. We build classifiers on these randomized training sets and test 

on the corresponding test set. This results in a set of error rates e  for training set 

size . From these error rates we construct an empirical distribution function for the 

random classifier,  

{ 1,1 −=y

n

}

ine ,

2

jin ,,

( ) ( )∑∑
= =

× −=
1 2

21
1

,,
1

1 ,
T

i
jin

T

j
TT

ran
n exxP θ  

where ( ) 0 and  0 if 1 ≥= zzθ  otherwise. The significance of the classifier is ( )nran
n eP  which 

is the percentage of random classifiers with error rate smaller than ne . The procedure is 

illustrated with the following two examples for a fictitious dataset:  
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Example 1:  37.15 =e

.,,15 =jie

 (Error rate of the classifier with 15 samples). 

 (Error rates 

of the random classifiers with 15 samples).   

{ }495,.420,.408,.395,.388,.366,.320,.290,.260,.215

( ) 50.=1515 eP ran . Since 

the p-value is greater than .05 the error rate of the classifier is not 

statistically significant (see figure 2a). 

 

Example 2:  1.45 =e

,,45 =jie

 (Error rate of the classifier with 45 samples). 

 (Error rates 

of the random classifiers with 45 samples), 

{ }499,.425,.406,.399,.392,.370,.337,.333,.270,.205.

( ) 0=4545 eP ran . Since the 

p-value is less than .05 the error rate of the classifier is statistically 

significant (see Figure 2b). 

 

The detailed description of the entire methodology for a two-class problem is as follows: 

 

1) Sub-sampling and significance permutation test 

a. Sub-sampling procedure 

i. Given l  samples from class 1 and  samples from class 2, the 

total number of samples is 

1c 2c
l

21 cc lll += , where  l ≥10. 

ii. Select 10 training set sizes ( )101 ,..,.., nnn j  over the interval 

.  ]10,10[ −l
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1. For each training set size n j  run the following sub-sampling 

procedure 501 =T  times, indexed by 1,...,1 Ti =   

a. Randomly split the dataset into a training set with n  

samples and a test set with 

j

jn−l  samples subject to 

the requirement that 
1

2

c

c

1

2

c

c

n
n

l

l
≈  where  and  are 

the number of samples from class 1 and class 2 in the 

training set.  Call the two datasets generated  

2c
n

1c
n

in,S

b. Train a classifier on each of the training sets and 

measure its error rate on its corresponding test set, 

call each of these error rates  ine ,

 

b. Permutation test 

i. For each sub-sampled train/test split  run the following 

permutation procedure T times, indexed by  

inS ,

502 > 2,...,1 Tj =

1. Randomly permute the labels of the samples in the training 

set (leave the test set al.one), call the dataset generated 

 ran
jinS ,,

2. Train a classifier on the training set and measure its error on 

the test set, call this error rate e  ran
jin ,,

c. Significance calculation 
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1. For each training set size  construct an empirical 

distribution function from the error rates of the permuted 

datasets 

n

( ) ( )∑∑
= =

× −=
1 2

21
1

,,
1

1 ,                       
T

i

ran
jin

T

j
TT

ran
n exP θx    

where ( ) otherwise and  if 01 ≥  0= zzθ . 

2. Given the above empirical distribution function compute for 

each ne  the value ( )nran
nn ePt = , statistical significance with 

respect to an α -value of  is achieved for , the smallest 

 for which 

p 0n

n ptn <  

 

2) Learning curves and training set size estimation 

a. Assume the sub-sampling procedure was run for  different sample 

sizes , indexed by 

M

n Ml ,...1= , take the sequence of error rates and 

compute the following quantities for each training set size  for which 

the classifier passed the significance test ( t

0nn >

pn < ): he mean error rate 

∑
=

1T

i
=

1
1

,
1

inTn ee , the 25th , and 75th quantiles of the vector of error rates 

{ }
1,1, ,..., Tne ne . 

b. Use the above quantities to fit the following learning curves: 

i. Given training set sizes  and mean error rates ln lne compute ba,,α  

via the following minimization procedure: 

( )∑
=

− ≥−+
M

l
nlba

baeban l

1

2

,,
0,,  subject to    min αα

α
, designate the values 
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ba,,α  as mmm ba ,,α . The resulting curve estimates the error rate as 

a function of training set size     

( ) .: mm bnane m += −α  mL                            

}
1,1, ,..., Tnn ee

ii. Repeat the above procedure for the 25th and 75th quantiles of the 

vector of error rates {  
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Section 4. Methodology applied to several cancer classification problems 

The procedure outlined in the previous section has been applied to eight binary DNA 

microarray cancer classification problems representing a broad range of level of 

complexity of classification. The classification problems are to discriminate between 

tumor morphologies. (including disease vs. normal and submorphologies) or treatment 

outcome. A more detailed analysis of the methodology will be given for the largest 

dataset (cancer vs. normal tissue classification). For the seven other datasets we will 

present only the final results. 

 

The set of examples falls into two cases. The first case consists of classification 

problems that are relatively easy and where statistical significance for the classifiers is 

achieved at a low number of training set samples (e.g. between 10-20 samples) and 

where the dataset is sufficiently large (e.g., 40 samples) to accurately fit a learning 

curve. The second case consists of classification problems that are more difficult and 

where statistical significance is achieved at between 40-60 training samples while the 

total number of samples in the dataset is barely larger (e.g. between 50-70). For these 

more difficult problems we cannot strictly follow the methodology since we do not have 

enough training set sizes at which significance is reached to make an accurate fit of the 

learning curve. However, we can still fit the curves and use the results as indicative and 

exploratory. A possible third case is when significance is never reached for any 

available training set size for a dataset. In this case it is difficult to draw any conclusion 

but it is possible that either adding more samples will not help (e.g. because there is not 

sufficient molecular information to classify this dataset) or the problem is very hard and 
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substantial numbers of samples are needed before one sees an statistically significant 

results. Our first five morphology datasets are examples of the first case. The final three 

treatment outcome datasets are examples of the second case. Table 1 summarizes the 

learning curve parameters and extrapolated error rate estimates at 400 training samples 

for all the data sets. Table 2 summarizes and comments on the results of running the 

methodology on the various datasets. General conclusions and interpretation of the 

results will be presented in the next section.  

 

Tumor vs. normal tissue 

 

This dataset consists of expression levels for 180 samples of a variety of different 

primary tumors (breast, prostate, lung etc…) and 100 normal samples from the 

corresponding tissue of origin (again breast, prostate, lung etc…) [Ramaswamy et al. 

2001b]. The dimensionality of the dataset is 16063 (throughout this section by 

dimensionality we mean the number of gene expression values recorded for a sample). 

No preprocessing was performed. The classifier used was a Support Vector Machine 

[Vapnik 1998] with a linear kernel and no feature selection. Error rates were estimated 

for training set sizes of . A leave-one-out model built 

with all the available samples (280) was used to validate the method and to compare 

the scaling model to the error rate achieved when using almost the entire dataset, this 

corresponds to a training set size of 

( 210,170,130,90,80,60,50,40,30=n

279

)

=n . 

 

 19



Figure 3 illustrates the results of the significance permutation test for this dataset, i.e., 

the statistical significance of classifiers with training sets of 15 and 30 samples. As can 

be seen in Figure 3b, with 30 samples most of the random classifiers attain larger error 

rates than the actual classifier. For the case using 15 samples, about one in 20 of the 

random classifiers attain the same or better error rates and therefore a p-value of 5% is 

achieved. To fit the learning curves we will use only data points obtained from training 

sets of size greater than or equal to 15. 

 

To study the improvement of the learning curve estimates as a function of the number of 

training set sizes used to fit the learning curves we constructed four learning curves 

using: 1) the error rates for all training set sizes (up to 210), 2) the error rates for the first 

8 training set sizes, 3) the error rates for the first 6 training set sizes, 4) the error rates 

for the first 4 training set sizes. The plots of these learning curves along with the leave-

one-out error for 280 samples is given in Figure 4. As expected the model improves as 

more and larger training set sizes are used in the fit.  The actual leave-one-out error 

rate achieved with 280 samples is only about 2% less than the error rate estimated for 

279 training samples by extrapolating the learning curve model. Figure 5 shows the 

curve for the power law that results from applying the methodology to a) all training 

samples sizes stated above (up to 210) and b) using the first 6 training set sizes (up to 

90), along with the leave-one-out error for the entire dataset (280 samples). The 

expression for the error rate as a function of n  estimated using training sets sizes (up to 

210) is 
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( ) 0098.42.1 52.0 += −nnerror . 

 

The error rates for the 25th and 75th quantiles are 

 

( ) 0032.89.1 63.0
25 += −nnerror  

( ) .000.17.1 43.0
75 += −nnerror   

 

Based on this model one can see clearly how fast the error rate decreases with 

increasing dataset size. The asymptotic Bayes error rate  is very small indicating that 

indeed very low errors can be achieved if a large dataset were used to train the 

classifier. The decay rate 

b

α  is about .5 indicating that, in scaling terms, this is a rather 

difficult problem for the model to learn. The size of the 25th and 75th quantiles envelope 

is about +/- 2% and it indicates that the model is relatively accurate. If we were going to 

collect 400 training samples this model can be used to extrapolate the error rate as 

follows: 

 

( ) %3.70098.)400(42.1400 52.0 =+= −error  

( ) ( ) %7.40032.40089.1400 63.0
25 =+= −error   

( ) ( ) %.9.8000.40017.1400 43.0
75 =+= −error  

 

The achievable error rate using 400 samples according to the model is 7.3  2.6% and 

perhaps as low as 4.7% (25

±

th quantile envelope). 
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Leukemia morphology 

 

The dataset consists of expression levels for 48 samples of acute lymphoblastic 

leukemia (ALL) and 25 samples of acute myeloid leukemia (ALL) [Golub et al. 1999]. 

The dimensionality of the dataset is 7129. No preprocessing was performed. The 

classifier used was a Support Vector Machine [Vapnik 1998] with a linear kernel and no 

feature selection. Error rates were estimated for training set sizes of 

. In Figure 6 a plot of the learning curve and its 25( 35,30,25,20,15,10=n

n

) th and 75th 

quantiles is given along with the leave-one-out error of the 73 samples. A p-value of 5% 

is achieved at about 5 samples. The learning curve estimate of the error rate as a 

function of  is 

 

( ) 009.7706. 65. += −nnerror . 

 

 

In this case, the learning and decay rates are such that the model clearly learns more 

quickly than in the previous example as a function of training set size. It achieves 

practically a zero error rate at 73 samples (consistent with the 25th quantile envelope). 

The envelope is wider in this case because we fit the model using a narrower range of 

dataset sizes over which the empirical error rates display more variation than the 

previous dataset.  
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Colon cancer     

 

The dataset consists of expression levels for 22 samples of normal colon tissue and 40 

samples of malignant tissue [Noterman et al. 2001]. The dimensionality of the dataset is 

2000. The data was preprocessed by taking the natural logarithm of all input values, 

and then applying a hyperbolic-tangent function. The classifier used was a Support 

Vector Machine [Vapnik 1998] with a linear kernel and no feature selection. Error rates 

were estimated for training set sizes of ( )50,45,40,35,30,25,20,15,10=n . In Figure 7, a plot 

of the learning curve and its 25th and 75th quantiles is given along with the leave-one-out 

error of the 62 samples. 

A p-value of 5% is achieved at about 10 samples. The learning curve estimate of the 

error rate as a function of  is n

 

( ) 2797.04798. −= nnerror . 

 

Ovarian cancer 

 

The dataset consists expression levels for 24 samples of normal ovarian tissue and 30 

samples of malignant tissue [Schummer et al. 1999]. The dimensionality of the dataset 

was 1536. The data was preprocessed by adding 1 and taking the natural logarithm of 

all input values. The classifier used was a Support Vector Machine [Vapnik 1998] with a 

linear kernel and no feature selection.  Error rates were estimated for training set sizes 

of . In Figure 8, a plot of the learning curve and its 25( 40,35,30,25,20,15,10=n ) th and 75th 
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quantiles is given along with the leave-one-out error of the 54 samples. A p-value of 5% 

is achieved at about 10 samples. The learning curve estimate of the error rate as a 

function of  is  n

( ) 6864.07362. −= nnerror . 

 

Lymphoma morphology  

 

The dataset consists of expression levels for 24 samples of diffuse large B-cell 

lymphoma and 12 samples of follicular lymphoma and chronic lymphocyptic [Alizadeh et 

al. 2000]. The dimensionality of the dataset was 18,432. The data was preprocessed by 

taking the base 2 logarithm of all input values. The classifier used was a Support Vector 

Machine [Vapnik 1998] with a linear kernel and no feature selection. Error rates were 

estimated for training sizes of ( )40,35,30,25,20,15,10,5=n

n

. In Figure 9, a plot of the 

learning curve and its 25th and 75th quantiles is given along with the leave-one-out error 

of the 36 samples. A p-value of 5% is achieved at about 5 samples. The learning curve 

estimate of the error rate as a function of  is  

 

( ) 0006.57. 7073.0 += −nnerror . 

 

Brain cancer treatment outcome  

 

The dataset was obtained from 39 samples of patients that had successful treatment 

outcome (alive two years after treatment) and 21 samples of patients with poor 
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treatment outcome. All patients had childhood Medulloblastomas [Pomeroy et al. 2002]. 

The dimensionality of the dataset is 7129. No preprocessing was performed. The 

classifier used was a Support Vector Machine [Vapnik 1998] with a linear kernel 

selecting 150 features using the radius-margin criteria [Chapelle et al. 2001]. Error rates 

were estimated for training set sizes of ( )40,35,30,25,20=n . 

 

Statistical significance on this dataset (a p-value of 5%) is achieved at about 45 

samples, which is larger than any of the training set sizes for which error rates were 

estimated so strictly speaking we cannot apply the methodology.  

 

However, we can examine how accurately a learning curve fit to the error rates for the 

above training set sizes can extrapolate. In Figure 10, a plot of the learning curve and 

its 25th and 75th quantiles is given along with the leave-one-out error of the 60 samples. 

As expected, this model is not very accurate and over estimates the error rate at 59 

samples by more than 7%. The learning curve estimate of the error rate as a function of 

 is n

( ) 006.115.1 3295. += −nnerror .  

 

Lymphoma treatment outcome  

 

The dataset was obtained from 32 samples of patients that had successful treatment 

outcome (alive two years after treatment) and 26 samples of patients with poor 

treatment outcome. All patients had diffuse large cell lymphoma (DLCL) [Shipp et al. 
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2001]. The dimensionality of the dataset is 7129. No preprocessing was performed. The 

classifier used was a Support Vector Machine [Vapnik 1998] with a linear kernel 

selecting 150 features using the radius-margin criteria [Chapelle et al. 2001]. Error rates 

were estimated for training set sizes of ( )40,35,30,25,20=n . Statistical significance on 

this dataset (a p-value of 5%) is achieved at about 50 samples. In Figure 11 a plot of the 

learning curve and its 25th and 75th quantiles is given along with the leave-one-out error 

of the 58 samples. As expected, this model is not very accurate and over estimates the 

error rate at 57 samples by more than 9%. The learning curve estimate of the error rate 

as a function of  is  n

 

  ( ) 01.9431. 2957. += −nnerror . 

 

Breast cancer treatment outcome 

 

The dataset consists expression levels of 34 samples from patients with breast tumors 

that metastasized within five years of disease onset and 44 samples from patients that 

were disease free for at least five years [Van’t Veer et al. 2002]. The dimensionality of 

the dataset was 24,624. No preprocessing was performed. The classifier used was a 

Support Vector Machine [Vapnik 1998] with a linear kernel without feature selection. 

Error rates were estimated for training set sizes of ( )70,60,50,40,30,20,10=n . Statistical 

significance on this dataset (a p-value of 5%) is achieved at about 65 samples. In Figure 

12 a plot of the learning curve and its 25th and 75th quantiles is given along with the 

leave-one-out error of the 78. As expected, this model is not very accurate and over 
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estimates the error rate at 77 samples by more than 6%. The learning curve estimate of 

the error rate as a function of  is  n

 

( ) 01.4852. 0733. += −nnerror . 
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Section 5. Conclusions 

 

We have described a methodology for assessing the significance of a classifier's 

performance via a permutation test and constructing a learning curve to extrapolate 

error statistics for larger data sets that include yet unseen samples.  We applied the 

method to eight cancer classification problems of varying levels of difficulty. Based on 

the results of the previous section, one can see that the inverse power-law scaling 

model proposed fits the empirical error rates reasonably well. The classifier we used 

was an SVM but the methodology is applicable to other algorithms (e.g. weighted 

voting, k-nearest neighbors, logistic regression etc.). For the morphology classification 

problems the extrapolation is quite accurate. For the treatment outcome classification 

problems the combination of the increased complexity of the problems and the limited 

dataset sizes yield a less accurate, but still indicative extrapolation. As expected, the 

model improves as larger training samples sizes are used in the learning curve fit (see 

Figs. 4 and 5).  The learning curves bear out the empirical observation that 

morphological distinctions are more dramatic and thus, in general, "simpler" problems 

than the more subtle distinctions that must be determined for treatment outcome 

prediction. Significance on morphology problems is achieved with 10-20 training 

samples and “reasonably accurate” extrapolation requires 30-40 training samples.  In 

contrast, for treatment outcome, significance is achieved with 45-60 training samples 

and “reasonably accurate” extrapolation requires on the order of 75-100 training 

samples. For morphological distinctions the learning curve prediction is reasonably 

close to the actual leave-one-out error measured at a larger size. The 25th and 75th 
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quantile models provide useful error bar envelopes that enclose the observed error 

rates for those problems. For treatment outcome prediction, due to the large training set 

size required to achieve significance and small available dataset sizes, we do not have 

enough significant classifiers with which to construct an accurate learning curve. 

Consequently, we get less accurate estimates of the leave-one-error on the entire 

dataset for the outcome treatment examples with differences of 7% for brain tumor 

outcome, 9% for Lymphoma treatment outcome, and 8% for breast tumor metastasis. 

 

The estimation of the asymptotic Bayes error b, the learning rate a, and decay rate α , 

can also be used directly to characterize the difficulty of a problem and the complexity of 

a model. They can provide a basis for comparing and contrasting models and problems. 

To illustrate, we show in Figure 13 the values of these parameters for the examples 

discussed in the paper.  The morphology and treatment outcome datasets cluster with 

respect toα , and b.  We have not elaborated on this aspect of the analysis but it is 

certainly an interesting direction to pursue in the future. 

 

In summary, our methodology produces reasonable, non-trivial dataset size estimates 

when applied to a fairly general set of molecular cancer classification problems. In this 

context it can serve as a valuable tool when designing future experiments, either for 

evaluating whether it is worthwhile to collect additional samples, or for obtaining a 

deeper insight into the complexity of a given classification problem based on preliminary 

data. Table 1 shows a summary of the results for the examples described in this paper. 

The results of applying this method to those examples suggest that minimum dataset 
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size requirements for morphological classifications are typically in the 10-20 samples 

range and upwards of 50 samples for treatment outcome classification.  These results 

can be used to provide general rule of thumb guidelines but the exact numbers for a 

given problem are dataset and classifier dependent.  This method can also be applied 

to other domains where a prospective estimation of the number of samples is relevant 

as is the case in many problems using molecular features to classify biological samples, 

e.g., classification based on proteomic mass spec. data, chemosensitivity prediction, 

survival analysis, and putative class discovery using clustering. 
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Appendix 1: Bias properties of the mean, variance, and quantiles of leave-p-out 

estimators 

 

1a) The mean of the leave-p-out estimator is unbiased. 

 

Statement 1: The procedure of excluding  samples from a dataset of size , 

constructing a classifier, and then testing on the  samples left out is designated as 

follows: 

p l

p

( ) ( )( )∑ −=
p

ppp zfzQ
p

zzL ll ,1,...1  

where , ( )yxz ,= ( )pzf −l  is the classifier constructed with  samples left out and p

( )( )pz −lp fzQ ,  is the error of this classifier on the samples left out. This procedure is 

unbiased: 

p

( ) ( )( )pp zfzQEzzLE −= ll ,,...1      

which means that the expected error when the classifier is trained with  samples is 

the same as the expected error of procedure . 

p−l

pL

 

Proof:  

The proof is a straightforward extension of the leave-one-out case which was derived by 

Luntz and Brailovsky [Luntz et al. 69] by the following series of transformations:  
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The implication of this statement is that the subsampling procedure proposed is 

unbiased and in expectation gives us more accurate estimates of the true error of a 

classifier trained with  samples as the number of subsamples increase. p−l

 

1b. The variance of the leave-p-out estimator is biased and optimistic. 

 

Statement 2: The variance of the leave-p-out estimator is less than or equal to the 

variance of a classifier trained with p−l samples and tested on an independent sample, 

so the variance of the leave-p-out procedure is not necessarily unbiased. This 

procedure is not necessarily unbiased and in general will be optimistic: 

( ) ( )( )pp zfzQVzzLV −≤ ll ,,...,1    

which means that the expected variance when the classifier is trained with p−l  

samples is greater than or equal to the variance of the procedure . pL
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Proof:  

 

Again we will prove the leave-one-out case and the leave-p-out case is a 

straightforward extension. 

 

The variance of training sets of size 1−l  is   

( )( ) ( )( ) ( )( )[ ][ ]     2
1

2
11 ,,, −−− −= lll zfzQEzfzQEzfzQV . 

 

The variance of the estimator  

( ) 
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=

l

l
ll 1

11
1,...,1
i

itVzzLV      

where  is whether an error is made or not when the iit
th  point is left out, 

( )( )lxxxxfzQ iii ,...,,,...,, 111 +− . 

We can rewrite this as 
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( )( )∑
=

−=
l

l
l 1

1,1
i

i zfzQEtE    . 

So 

( )( )[ ]21

2

11
,11

−
==

−







=







 ∑∑ l

ll

ll
zfzQEtEtV

i
i

i
i     . 

One can show that 
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if the random variables  are identical and independent then the above equation can 

be rewritten 
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The implication of this statement is that the variance of sub-sampling procedure 

proposed is biased and does not give an accurate estimate of the variance of a 

classifier trained with  samples and in general the variance of the sub-sampling 

procedure will be smaller. 

p−l

 

1c. Quantiles of the leave-p-out estimator are unbiased. 

 

Statement 3: Quantiles of the leave-p-out estimator estimated give an accurate 

estimate of quantiles of a classifier trained with p−l samples and tested on an 

independent sample. 
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Proof:  

Again we will prove the leave-one-out case and the leave-p-out case is a 

straightforward extension. 

 

The cumulative distribution function of the random variable  is ( )( )1, −= lzfzQt

{ }ξ<
−
tPD 1l

. The cumulative distribution function of the random variable ( )lzl
l

zLr ,...1
11−=  

is { }ξ<rPDl . If we show that these distribution functions are equal then the quantiles of 

the leave-p-out estimator is unbiased.  The distribution function of the random variable 

t is 

( ) ( ) ( ) ( )dttpttdttpttP     ∫ ∫
∞−

∞

∞−

−==<
ξ

ξξ θ . 

The distribution function for the random variable ∑
=

=
l

l 1

1
i

irr  can be written as follows by 

a similar sequence of transformations as used in the proof of statement 1 

( ) ( ) ( ) ii
i

ii drrprrrP   ∑ ∫
=

∞

∞−

−=<
l

l 1

1 ξξ θ  

which is the same as ( ).ξ<tP  

 

We have now shown that the cumulative distribution function of the error measured of 

the leave-p-out procedure is equivalent to the cumulative distribution of a classifier 

trained on  samples. p−l

However, we do not have this distribution when we run the leave-p-out procedure 
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We have a sequence of  error rates and we take the 25p th and 75th quantiles of the 

empirical distribution function constructed from the sequence. We can use the 

Kolmogorov-Smirnov or Smirnov distributions to show that the empirical quantiles 

values are close to those for the true underlying distribution. For 

l  large enough ( ) the Kolmogorov-Smirnov distribution gives us 20>l

 

( ) ( ) ( )∑
∞

=

−−−−≈






 <−

1

21 22

121sup
k

kk

x
exFxFP εεll  

 

where  is the distribution function of the error rates, ( )xF ( )xFl  is the empirical 

distribution function constructed from a sequence of l  error rates. We can use this 

result to state that with probability δ−1  the difference between the estimate of a 

quantile and the true quantile value will be bounded. For the case where l instead 

of using the Kolmogorov-Smirnov distribution one can use tabulated values of the 

Smirnov distribution. 

20≤

 

♦  

 

The implication of this statement is that the sub-sampling procedure proposed gives us 

more accurate estimates of the quantiles of the true error of a classifier trained with 

 samples as the number of sub-samples increase. p−l
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Appendix 2: Motivation of the inverse power law for the error rate as a function of 

training set size 

 

2a. A motivation from the statistical mechanics approach to learning 

 

In this appendix we will describe results derived within the statistical mechanics (SM) 

approach to generalization [Engel 2001, Watkin 1993] which strongly motivates the use 

of equation (1).  In this approach the average generalization error can be calculated as 

a function of . In order to derive analytic expressions, the data is assumed to consist 

of randomly constructed and uncorrelated input patterns. This assumption is unrealistic 

for practical datasets, of course, but we can assume that the functional relation derived 

between  and  largely holds for real-life data. In the SM approach a teacher (the 

rule to be discovered) and student (the learner) are used, with the extent of correlation 

between teacher and student quantifying generalization ability. To be more specific let 

us consider a simple perceptron [Rosenblatt 1962] rule with a decision function 

n

)(ne n

 

( )zwy ⋅= sign  

 

where z is an input vector,  is the weight vector for the perceptron (which weight the 

relevance of particular inputs or attributes), and 

w

1±=y  is the output. Suppose the 

weight vector for the teacher perceptron is t  and the weight vector for the student 

perceptron is  then the number of generalization errors made by the student 

perceptron on a set of 

w

p  new samples will be  
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where 0=)(xθ  if  and 1 otherwise. This general approach leads to a set of 

equations for determining the generalization error via a replica approach [Hertz 1991] 

involving integrations in the weight space . The generalization error is given as a 

function of the ratio 

0<x

=

w

mn /β  (where is the number of attributes). However, with m  

fixed we can assume the same functional dependence on n  as for 

m

β . From this 

analysis we find that the generalization error depends on the algorithm used and 

generally assumes a power law.  

 

It can be argued [Dietrich et al. 1999] that a Support Vector Machine with linear kernel, 

used in our numerical simulations, has the same generalization error dependence as 

the optimal perceptron [Opper et al. 1990].  We have solved the system of equations in 

[Opper et al. 1990] in the low β  limit and find a very close fit to equation (1). With few 

samples and a large number of measured attributes the low β limit is most appropriate 

when considering microarray data. However, some further insights can also be gained 

by considering the high β limit where the dependence of generalization error on β  (or 

equivalently ) can be extracted explicitly. Thus for the optimal perceptron the 

generalization error scales as .  [Opper et al. 95].  Similarly for other rules this 

scaling can be extracted explicitly [Engel 2001]. For example, for the Bayes optimal 

classifier (derived from the Bayes Point or center of mass of version space - the space 

n

150 −n
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of all hypotheses consistent with the data) the generalization error scales as .  

[Opper et al. 91]. For the Adaline learning rule the error scales as . , and for the 

Hebb rule as .  (see [Watkin 1993] for a review). The dependence on  is thus 

approximately  with 

144 −n

2/124 −n

2/140 −n

α−n

n

α  near 1 for the more efficient rules such as the optimal 

perceptron and Bayes optimal classifier. The SM approach to generalization has also 

been used to quantify the effects of input noise, output noise and noise affecting the 

parameters in the model (e.g. the weights ). Thus, for example, white noise added to 

examples in the training set appears as an additive constant term to the generalization 

error (justifying the  term in equation (1)). In summary, then, this approach strongly 

motivates use of  for modeling the generalization error. 

w

Tf

b

ne )(

H

ban +=

Tf

fo

−α

H∈

 

2b. A motivation from an approximation theory point of view 

 

Another justification for a power law for regression or classification comes from 

approximation theory [Niyogi et al. 96]. In the approximation theory framework the 

classification functions come from some restricted function class  and the optimal 

classification function  is a more complicated function that is not included in the 

function class . For a wide variety of algorithms the distance between the optimal 

function in the function class  and  is characterized as 

f

H∈

 

( ) ( )α−= nOffd To , , 
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where 0>α . Worst case analyses measure the distance between the two functions as 

the value of the point of greatest deviation between these functions.  

For function classes used in most algorithms the worst case analysis yields 5.=α . In 

general an empirical result should have quicker convergence since the worst case 

assumptions need not be made. When the loss function  

( )⋅⋅,V  is smooth then the difference in error measured using the loss function 

between  the functions  and  is of Tf ( )( ) ( )( ) ( )α−=− nOyxfVyxf To ,,V  for all ,Xx∈ and 

. By a smooth loss function we mean loss functions that are  with  or 

Lipschitz over a bounded domain. Note that the classification loss,  

Yy∈ Pl 1≥p

( )( ) (( xyfyxfV −=θ, ))  is not Lipschitz and when the classifier outputs ( ) 1±=xf

0

 the 

loss function is . However, for most algorithms the loss function optimized to set the 

parameters of the classifier is Lipschitz (for computational reasons the l loss is not 

used). For example in Support Vector Machines for classification the loss function is 

Lipschitz. For this reason this analysis is still appropriate.   

0l

 48



 a)                                                         b) 

 
Figure 1. The statistical significance for the fictitious dataset example with a) 15 samples and b) 

45 samples. The blue line is the empirical distribution function for the random classifiers and the 

red point is the average error rate for the classifier with randomization of labels. 
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Figure 2. Dataset size estimation statistical methodology.   
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 a)                                                      b) 

 

Figure 3. The statistical significance in the tumor vs. non-tumor classification for a) 15 samples 

and b) 30 samples. The blue line is the empirical distribution function for the random classifiers 

and the red circle is the average error rate for the actual classifier. 
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Figure 4. Error rate as a function of sample size. The blue diamond is the leave-one-out error 

using 279 samples. The green curve is the learning curve using the first 4 sample sizes. The 

magenta curve is the learning curve using the all sample sizes. The blue and the red curves 

(which basically overlap) are the learning curves using the first 6 (red) and first 8 (blue) sample 

sizes. 
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Figure 5. Learning curves in the tumor vs. non-tumor classification constructed 

using a) all samples sizes stated above and b) using the first 6 sample sizes stated 

above. The blue line is the learning curve for the mean error. The magenta line is 
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for the 25th quantile. The red line is for the 75th quantile. The blue diamond is the 

leave-one-out error and the red points are the measured average error rates.  
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Figure 6. Learning curves in the AML vs. ALL classification constructed using samples 

sizes stated above. The blue line is the learning curve for the mean error. The magenta line 

is for the 25th quantile. The red line is for the 75th quantile. The blue diamond is the leave-

one-out error and the red points are the measured average error rates. 
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Figure 7. Learning curves in the malignant vs. normal colon tissue  classification 

constructed using samples sizes stated above. The blue line is the learning curve 

for the mean error. The magenta line is for the 25th quantile. The red line is for the 

75th quantile. The blue diamond is the leave-one-out error and the red points are 

the measured average error rates. 
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Figure 8. Learning curves in the cancerous vs. normal ovarian tissue classification constructed 

using samples sizes stated above. The blue line is the learning curve for the mean error. The 

magenta line is for the 25th quantile. The red line is for the 75th quantile. The blue diamond is the 

leave-one-out error and the red points are the measured average error rates. 
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Figure 9. Learning curves in the diffuse large B-cell vs. follicular morphology classification 

constructed using samples sizes stated above. The blue line is the learning curve for the mean 

error. The magenta line is for the 25th quantile. The red line is for the 75th quantile. The magenta 

star is the leave-one-out error and the blue points are the measured average error rates. 
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Figure 10. Learning curves in the brain tumor treatment outcome classification constructed using 

samples sizes stated above. The blue line is the learning curve for the mean error. The magenta 

line is for the 25th quantile. The red line is for the 75th quantile. The blue diamond is the leave-one-

out error and the red points are the measured average error rates. 
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Figure 11. Learning curves in the lymphoma treatment outcome classification constructed using 

samples sizes stated above. The blue line is the learning curve for the mean error. The magenta 

line is for the 25th quantile. The red line is for the 75th quantile. The blue diamond is the leave-one-

out error and the red points are the measured average error rates. 
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Figure 12. Learning curves in the breast cancer treatment outcome classification constructed 

using samples sizes stated above. The blue line is the learning curve for the mean error. The 

magenta line is for the 25th quantile. The red line is for the 75th quantile. The blue diamond is the 

leave-one-out error and the red points are the measured average error rates. 
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Figure 13. A plot of α/1  vs. β for the eight datasets. The blue diamonds correspond to treatment 

outcome problems and the magenta squares correspond to morphology prediction problems. 
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Dataset/Problem Predicted error rate at 400 samples 
 
25th quantile    Mean     75th quantile 
  

Learning Curve Parameters 
            a           α        b  
               learning    decay      asymp.  
               rate             rate         Bayes 
                                                   error 

Multiple tissues 
Cancer vs. normal 

      4.7%            7.3%            8.9% 25th quantile   1.89        –0.63       0.003 
mean              1.42        –0.52       0.010 
75th quantile   1.17        –0.43       0.000 

Leukemia  
AML vs. ALL 

     0.6%            2.5%            3.4%  25th quantile   39.8       –2.3          0.006 
mean              .771        –0.65       0.009 
75th quantile   .884        –0.6         0.010 

Colon cancer 
Cancer vs. normal 

     4.8%            9.0%           12.4% 25th quantile   .439        –0.37        0.00 
mean              .480        –0.28        0.00 
75th quantile   .500        –0.23        0.00 

Ovarian cancer 
Cancer vs. normal 

     .03%            1.2%           1.8% 25th quantile   10.7        –1.76        0.00 
mean              .736        –0.69        0.00 
75th quantile   .995        –0.67        0.00 

Lymphoma  
DLBC vs. Follicular 

       0%             0.9%          1.5% 25th quantile   8.99        –2.48        0.00 
mean              .57          –0.70        0.001 
75th quantile   .671        –0.64       0.00 

Brain cancer 
Treatment outcome 

   14.5%          16.1%        23.8%     25th quantile   1.06        –0.37       0.004 
mean              1.12        –0.33        0.006 
75th quantile   .980        –0.24       0.00 

Lymphoma 
Treatment outcome 

   11.2%           17%          24.3%             25th quantile   1.23        –0.41       0.008 
mean              .943        –0.30        0.01 
75th quantile   .872        –0.21        0.00 

Breast cancer 
Treatment outcome 

   24.3%          32.3%         40.4%       25th quantile   .532        –0.14        0.01 
mean              .485         –0.07       0.01 
75th quantile   .429        –0.01        0.00 

 
Table 1.  Summary of learning curve parameters and extrapolated error rates.  
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Dataset/Problem Dataset Size to 
achieve size 
classifier’s 
statistical 
significance 
(p-val < 0.05) 

Learning 
curve 
fitted with 
significant 
data 

Maximum 
training 
set size 
used in 
fitting 
learning 
curve 

Classification error 
 
Actual    Learning     % Error 

 Curve       
              (extrapolated) 

Conclusions 

Multiple tissues 
Cancer vs. normal 

280 15 yes 210 7.0%            8.6%           2.6% Dataset size is large enough for extrapolation and to achieve a low error  
rate ~0.10. Even lower error rates <0.07 are achievable with >400 samples. 

Leukemia  
AML vs. ALL 

73 10 yes 35 0.0%            5.6%           5.6%  Dataset size is large enough for extrapolation and to achieve a low error 
rate ~0.05.  Additional samples may lower error to ~0. 

Colon cancer 
Cancer vs. normal 

62 10 yes 50 16.3%         15.2%          1.1% Dataset size is large enough for extrapolation and to achieve an error  
rate of ~0.16. Lower error rates <0.09) are achievable with >400 samples. 

Ovarian cancer 
Cancer vs. normal 

54 10 yes 40 5.6%            4.8%           0.8% Dataset size is large enough for extrapolation and to achieve a low error  
rate ~0.05). Additional samples may lower error rate to ~0. 

Lymphoma  
DLBC vs. Follicular 

53 5 yes 40 4%                4.7%          0.7% Dataset size is large enough for extrapolation and to achieve a low error  
rate ~0.035). Additional samples may lower error rate to ~0. 

Brain cancer 
Treatment outcome 

60    45 no 40 22%             29.6%       7.6%     Dataset is not large enough for extrapolation. Fitting of learning curve is 
inaccurate but suggests error rate could be <0.14 with > 400 samples. 

Lymphoma 
Treatment outcome 

58    50 no 40 23%             29.5%       6.5%     Dataset is not large enough for extrapolation. Fitting of learning curve is 
inaccurate but suggests error rate could be <0.17 with > 400 samples. 

Breast cancer 
Treatment outcome 

78 65 no 70 30%            36.3%         6.3%    Dataset is not large enough for extrapolation. Fitting of learning curve is 
inaccurate but suggests error rate could be <0.32 with > 400 samples. 

 
Table 2.  Summary of results for datasets included in the study.  
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