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In an effort to develop a genomics-based approach to the predic-
tion of drug response, we have developed an algorithm for
classification of cell line chemosensitivity based on gene expres-
sion profiles alone. Using oligonucleotide microarrays, the expres-
sion levels of 6,817 genes were measured in a panel of 60 human
cancer cell lines (the NCI-60) for which the chemosensitivity profiles
of thousands of chemical compounds have been determined. We
sought to determine whether the gene expression signatures of
untreated cells were sufficient for the prediction of chemosensi-
tivity. Gene expression-based classifiers of sensitivity or resistance
for 232 compounds were generated and then evaluated on inde-
pendent sets of data. The classifiers were designed to be indepen-
dent of the cells’ tissue of origin. The accuracy of chemosensitivity
prediction was considerably better than would be expected by
chance. Eighty-eight of 232 expression-based classifiers performed
accurately (with P < 0.05) on an independent test set, whereas only
12 of the 232 would be expected to do so by chance. These results
suggest that at least for a subset of compounds genomic ap-
proaches to chemosensitivity prediction are feasible.

A long-term goal of pharmacogenomics research is the
accurate prediction of patient response to drugs, as it would

facilitate the individualization of patient treatment. Such an
approach is particularly needed in cancer therapy, where com-
monly used agents are ineffective in many patients, and where
side effects are common, given the nonspecific mechanism of
action of most chemotherapeutic drugs. Previous efforts to use
genetic information to predict drug sensitivity primarily have
focused on individual genes that have broad effects, such as
multidrug resistance genes mdr1 and mrp1 (1). Here we describe
a predictive methodology that seeks to tap more complex genetic
contributions to drug sensitivity. The recent development of
DNA microarrays, which permit the simultaneous measurement
of the expression levels of thousands of genes, raises the possi-
bility of an unbiased, genomewide approach to the genetic basis
of drug response.

Prediction of chemosensitivity in the clinic is particularly
challenging because drug responses reflect not only properties
intrinsic to the target cell, but also host metabolic properties. By
modeling this approach in cultured cells, we limited our study to
cell-intrinsic properties that are exposed in culture. A panel of
60 such cancer cell lines has been used extensively by the
National Cancer Institute’s Developmental Therapeutics Pro-
gram, and the merits and limitations of their use as screening
tools for drug development have been described (2–5). These cell
lines have been analyzed for their sensitivity to a broad range of
chemical compounds and thus offer an extensive database for the
testing of our methodology.

We investigated the feasibility of chemosensitivity prediction
by using oligonucleotide microarrays to measure the expression
levels of 6,817 genes in each of the 60 cell lines in the NCI-60
panel. The data can be found at www.genome.wi.mit.eduyMPRy

NC160yNC160.html. We then asked whether patterns of gene
expression were sufficient to predict sensitivity or resistance of
the cell lines to 232 chemical compounds. To maintain statistical
rigor, the data set was divided into two groups—a training set,
which was used to develop a gene expression-based chemosen-
sitivity classifier, and a test set, on which we evaluated the
accuracy of the classifier. When compared with random predic-
tion, a significant number of the expression-based classifiers
performed accurately, indicating that the response of cancer cell
lines to drugs is indeed predictable.

Materials and Methods
Compound Selection. The 60 cell lines were previously assayed for
their sensitivity to a variety of compounds as a part of the
Developmental Therapeutics Program at the National Cancer
Institute, as described (refs. 2 and 3; see also: http:yy
dtp.nci.nih.gov). Briefly, each cell line was exposed to each
compound for 48 h, and growth inhibition was assessed by the
sulforhodamine B assay for cellular protein. The concentration
of compound required for 50% growth inhibition was scored as
the GI50. For each compound, log10(GI50) values were normal-
ized across the 60 cell lines. Cell lines with log10(GI50) at least 0.8
SDs above the mean were defined as resistant to the compound,
whereas those with log10(GI50) at least 0.8 SDs below the mean
were defined as sensitive. Cell lines with log10(GI50) within 0.8
SDs of the mean were considered to be intermediate and were
eliminated from analysis. Prediction analysis was performed for
compounds that had a minimum of 30 sensitive and resistant
lines, with at least 10 each sensitive and resistant. To avoid
choosing drug compounds with narrow dynamic ranges of drug
responses, which are essentially sensitive or resistant to most of
the 60 cell lines, we also required that the 1.6-SD window around
the mean GI50 correspond to at least 1 order of magnitude in raw
GI50 values. Of 5,084 compounds evaluated, 232 met these
criteria. Importantly, gene expression data were not used in any
way in compound selection.

Training and Test Set Selection. For each selected compound, a set
of training cell lines was chosen in the following manner. Within
each tissue type (e.g., breast cancer; see Results), the most
sensitive and most resistant cell line were chosen. If a tissue type
lacked either sensitive or resistant cell lines according to the
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criteria above, it was not used in training. All sensitive or
resistant cell lines not selected for training were reserved as a test
set for final evaluation of the classifier.

Gene Expression Data. RNA was isolated as described (6). Poly(A)
selected RNA (1.5 mg) from each cell line was used to prepare
biotinylated cRNA targets as described (7); details are provided
at www.genome.wi.mit.eduyMPR. Targets were hybridized to
Affymetrix (Santa Clara, CA) high-density Hu6800 arrays,
washed, stained with phycoerythrin-conjugated streptavidin
(Molecular Probes), and signal-amplified with biotinylated anti-
streptavidin antibody (Vector Laboratories). Expression values
(average difference units) were calculated by using Affymetrix
GENECHIP software. An expression level of 100 units was as-
signed to measurements ,100.

An earlier version of the gene expression data was generated
by hybridizing the biotinylated targets to an earlier-generation,
low-density Affymetrix HU6800 four-chip set (HU6800 subA,
subB, subC, subD). These data were analyzed by Butte et al. (13),
using relevance networks, and are available at http:yy
www.genome.wi.mit.eduyMPR. However, all analyses described
in this article were performed on the data from the newer, higher
density arrays.

Weighted Voting Classification. We used a weighted voting scheme
to classify each cell line as sensitive or resistant on the basis of
gene expression data. In this scheme, a set of marker genes
‘‘vote’’ on the class of each cell line (8). For each compound
being classified, genes were excluded if they varied by less than
5-fold and 500 units across training cell lines, and by less than
2-fold across each pair of training cell lines of a single tissue type.
The remaining genes on the microarray were ranked according
to the correlation between their expression level and the sensi-
tivity and resistance profile of the training cell lines. We used a
measure of correlation, P(g,c), as described (8). Let [m1(g),
s1(g)] and [m2(g), s2(g)] denote the means and SDs of the
expression levels of gene g for the samples in class 1 and class 2,
respectively. Let P(g,c) 5 [m1(g) 2 m2(g)]y[ s1(g) 1 s2(g)],
which reflects the difference between the class means relative to
the variance within the classes. Large values of P(g,c) indicate
strong correlation between gene expression and class distinction,
whereas the sign of P(g,c) indicates whether higher expression
correlates with class 1 or class 2. The vote for each gene can be
expressed as the weighted difference between the normalized log
expression in the cell line to be classified and the average of the
sensitive and resistance class mean expression levels, where
weighting is determined by the correlation P(g,c) from the
training set. The class of the cell line is determined by the sum
of votes for all marker genes used in a classifier. In previous work
(8), classification was subjected to a confidence (prediction
strength) threshold; no such threshold was used here.

Optimizing Classifiers by Cross-Validation. Classifiers with 1–200
marker genes were used for training set cross-validation to
determine the number of marker genes that best classify each
compound. For each classifier, cross-validation was performed
with the entire training set: one cell line was removed, the
classifier was trained on the remaining cell lines and then tested
for its ability to classify the withheld cell line. This procedure was
repeated for each cell line in the training set. Cross-validation
accuracy rates are available at www.genome.wi.mit.eduyMPRy
NC160yNC160.html.

Evaluating Classifier Accuracy. The model that was most accurate
in cross-validation was chosen as the optimized classifier for that
compound. In the case of multiple models that scored identically,
the model with the larger number of genes was chosen. The
training set-optimized classifier for each compound was then

used to classify test cell lines. Performance was measured as the
average of the accuracy of classifying sensitive cell lines and the
accuracy of classifying resistant cell lines. As a control, 1,000
iterations of a simulation were run to classify the same 232 test
sets by random coin flip. The distributions from observed and
random results were compared by using the Kolmogorov–
Smirnov test (9), which is a test for whether two sets of data are
drawn from different distributions (see www.genome.wi.mit.
eduyMPRyNC160yNC160.html for details).

For computing the significance of individual classifier perfor-
mance, we computed the probability of the observed prediction
accuracy occurring by chance if such predictions were the result
of a fair coin flip. Consider a compound with n cell lines in the
test set, and a classifier that predicts j of the n cell lines correctly.
Because training introduces no class bias, the probability of
doing at least this well by chance, Pr(j correct predictions), is the
same as Pr($j heads of n fair coin flips), which can be repre-
sented as

O
i 5 j

n

~i
n!~1

2
!~n 2 i!~1

2
!i 5 ~1

2
!n O

i 5 j

n

~i
n! .

Results
Our classification scheme is outlined in Fig. 1. We approached
chemosensitivity prediction as a binary classification problem,
and thus for each compound, two classes of cell lines were
defined: sensitive and resistant. The majority of the 5,084
compounds demonstrated relatively uniform growth inhibitory
activities (GI50) across the 60 cancer cell lines, but we restricted

Fig. 1. General scheme for classification of compound sensitivity in cell lines
by using gene expression data.
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our analysis to compounds that included a balance of sensitive
and resistant lines (see Materials and Methods and Fig. 2). A total
of 232 compounds met these criteria (see www.genome.wi.mit.
eduyMPRyNC160yNC160.html for complete list of compounds
and cell lines).

For each of the 232 compounds, the sensitive and resistant cell
lines were divided into a training set and a test set, again by using
only drug sensitivity data to make these assignments. One
approach would be to select a set of cell lines at random for
training and use the remaining lines as a test set. The problem
with this approach is that the cell lines in the NCI-60 panel are
derived from nine broad categories of tissue of origin (lung,
breast, colon, kidney, bone marrow, melanocyte, central nervous
system, prostate, and ovary). Sensitivity to some drugs correlates
with tissue of origin, and thus one runs the risk of developing
classifiers that simply classify according to tissue type, rather
than according to drug sensitivity per se. To circumvent this
problem, we designed ‘‘tissue-aware’’ training sets. Each training
set included one sensitive and one resistant cell line from each
of multiple tissue types. A tissue type was used in training only
if it included both sensitive and resistant cell lines for the
compound, and thus the 232 training sets contained variable
numbers of cell lines (6 to 18). For each compound, the
remaining cell lines (16 to 35) were reserved as a test set that was
used to independently evaluate prediction accuracy. All reported
prediction accuracies are for test set samples only.

To create a gene expression database, RNA was extracted
from the 60 cell lines before any drug treatment. These RNAs
were then analyzed on oligonucleotide microarrays containing
probes for 6,817 known human genes. The genes were not
selected to be particularly informative for the present experi-
ments, but rather they represent the named human genes
identified in GenBank at the time the array was designed. The
expression levels of the 6,817 genes in each of the 60 cell lines
are available at www.genome.wi.mit.eduyMPRyNC160y
NC160.html.

To build and train classifiers, we used both drug sensitivity
data and gene expression data. The GI50 profile of each training
set was used as a template for marker gene selection. Each gene
was ranked according to the correlation in the training set
between its expression level and the sensitivity-resistance class
distinction (see Materials and Methods). Classification (sensitive
vs. resistant) was performed by using a weighted voting algo-

rithm, in which correlated genes ‘‘vote’’ on whether a cell line is
predicted to be sensitive or resistant (8). The vote for each gene
is a function of its expression in the cell line to be classified and
the degree to which its expression is correlated with sensitivity
or resistance in the training set (see Materials and Methods).
Classifiers with up to 200 correlated genes were tested through
cross-validation by holding back one cell line, training on the
remaining lines, predicting the class of the withheld line, and
repeating this cycle for each cell line in the training set. For each
compound, the classifier model that was most accurate in
training set cross-validation was selected as the optimized clas-
sifier for that compound, and it was evaluated without further
modification on the independent test set. Each optimized clas-
sifier contained between five and 200 genes, with an average
of 68 genes per classifier (all classifier genes and weights are
available at www.genome.wi.mit.eduyMPRyNC160yNC160.
html). This process of cross-validation diminishes the problem of
overfitting during selection of the optimal classifier, a particular
problem when dealing with small number of cases and large
numbers of variables.

Each classifier, optimized on a training set, was evaluated on
a test set of cell lines that had not participated in training. The
distribution of accuracies from expression-based classification
was compared with the distribution obtained from random
classification of the same 232 test sets (Fig. 3). The difference
between the two distributions is highly significant, as indicated
by the Kolmogorov–Smirnov test (P # 10224) (9, 10), with the
expression-based distribution clearly skewed toward higher
accuracy.

The significance of each classifier’s performance was assessed
by determining the probability of obtaining the observed accu-
racy rate by chance if each classification was the result of a fair
coin toss (see Materials and Methods). A total of 88 of 232 (38%)
expression-based classifiers performed accurately with a signif-
icance of P # 0.05, whereas only 12 such classifiers (5% of 232)
would be expected to do so by chance. The statistically significant
classifiers had a median accuracy of 75% (range 64% to 92%).
This result indicates that for a substantial subset of compounds
gene expression data were sufficient for accurate prediction of
chemosensitivity.

The compounds whose chemosensitivity was highly predict-
able spanned multiple structural categories, the majority func-
tioning through unknown mechanisms of action. We observed

Fig. 2. Example of compound (NSC 749; Azaguanine)
with bimodal distribution of growth inhibition. For each
compound, log(GI50) values were normalized across the 60
cell lines, and cell lines with log(GI50) within 0.8 SDs of the
mean are eliminated from analysis; remaining cell lines
were defined as sensitive or resistant to the compound.
Compounds with at least 30 cell lines outside the 1.6-SD
window, and for which the window represents at least 1
order of magnitude in raw GI50 data were analyzed fur-
ther. A total of 232 compounds met these criteria.
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no obvious connection between mechanism of drug action and
classifier accuracy. No obvious relationship was seen between
prediction accuracy and number of genes used or number of cell
lines used for training (data not shown).

In addition to yielding accurate predictors of chemosensitivity,
the gene expression data generated herein provide potential
insights into mechanisms of drug resistance. In general, the gene
expression correlates of drug sensitivity were complex, and their
biological significance not easily interpretable (all lists of genes
and weights are available at www.genome.wi.mit.eduyMPRy
NC160yNC160.html). Our method required variable expression
across multiple pairs of training cell lines, which explains some
notable absences, such as mdr1, whose expression level surpassed
our detection threshold (100 average difference units) in only
three cell lines. However, anecdotal relationships between cor-
related marker genes and known mechanisms of drug action
suggest that marker genes may provide insights into mechanisms
of drug action—or of sensitivity or resistance—for compounds
with unknown mechanism of action.

For example, the 120-gene classifier for cytochalasin D (NSC
209835) classified 20 cell lines with accuracy of 80% (significant
at a threshold of P , 0.0013). The marker genes for the
cytochalasin D classifier included 29 genes (24%) related to the
cytoskeleton or extracellular matrix (ECM). This set is enriched
relative to the '5% known cytoskeletalyECM genes on the
entire array (data not shown). The top 30 cytochalasin D marker
genes are shown in Fig. 4, along with the expression level of each
gene across the 20 cell lines (a classifier built on only 30 genes
similarly yields 80% accuracy). Cytochalasin D binds to actin and
induces dimers that interfere with polymerization, thus disrupt-
ing cytoskeletal integrity (11), but it has not been previously
suspected that the expression pattern of cytoskeletal genes in
untreated cells would be predictive of cytochalasin D sensitivity.
Interestingly, an excess of cytoskeletalyECM genes also was
observed for a number of other classifiers, including ones for
compounds that are not thought to act through cytoskeletal
components. For example, the 100-gene classifier for the anti-

folate, NSC 633713 is highly accurate (87.5% accuracy; signifi-
cant at a threshold of P , 0.0003) and includes 21 (21%)
cytoskeletalyECM genes. It is possible that cytoskeletal signa-
tures may reflect cellular components that influence sensitivity
to a variety of compounds rather than functioning as direct
targets of compound activity.

Discussion
Implicit in the goal of personalized medicine is the notion that
an individual patient’s response to drugs should be predictable.
However, experimental data supporting the genetic basis of
differential drug response are limited. We report here a system-
atic approach for gene expression-based prediction of chemo-
sensitivity. We have applied this methodology to the prediction
of cytotoxicity for 232 compounds in 60 cell lines by using the
gene expression profiles of untreated cells. The NCI-60 panel has
been used extensively in drug evaluation efforts at the National
Cancer Institute, and more recently, it has been studied at the
gene expression level by using an alternative approach to gene
expression profiling (cDNA microarrays) (6, 12). Those and
other studies (13) clearly demonstrate that biological correlates
of gene expression are identifiable. In the present study, we
explored whether such gene-drug correlates are sufficiently
robust to permit development of a chemosensitivity classifier
built exclusively on gene expression data.

A particular challenge in such an effort is the small size of the
data set. DNA microarrays allow for the measurement of
thousands of genes, yet most experiments contain relatively few
samples. The NCI-60 panel contains a total of 60 cell lines, but
only 2–9 cell lines represent each tissue type (e.g., kidney, colon).
When analyzing small data sets, one runs the risk of overfitting
a model to the data. This can result in overestimating the
classifier’s accuracy. We addressed this problem in two ways.
First, we used a leave-one-out cross-validation procedure to
build the prediction models. Second, we divided the data set into
two parts: a training set on which chemosensitivity predictors
were developed, and a test set, on which they were evaluated.

Fig. 3. Distribution of classification accuracies for 232 compounds. Percent accuracy for each compound is the average accuracy for classification of sensitive
and resistant test cell lines. The control distribution represents results obtained from random classification (1,000 iterations) of the 232 test sets.
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One disadvantage to this approach is that it further reduces the
size of the data set used to generate the model, and therefore
accuracy can be potentially compromised. A particular goal of
this study was thus to determine whether a data set of only 60
diverse cell lines would be sufficiently large to generate accurate,
statistically significant chemosensitivity classifiers.

Given the above limitations, the observed accuracies are quite
remarkable. Classification accuracy was far greater than one
would expect by chance alone, with approximately one-third of
the evaluated compounds being predictable with statistical
significance (P , 0.05). These results suggest that, for at least
some compounds, chemosensitivity is predictable by using only
the gene expression patterns of untreated cells. The results
further suggest that the identification of such patterns is feasible
in data sets of only modest size.

The training sets were specifically designed to identify gene
expression correlates of chemosensitivity within a tissue type, so
as to reduce the confounding problem of chemosensitivity-tissue
type correlations. However, such correlations may not be en-
tirely avoided by the method. The selection of extreme cell lines
within a given tissue type (i.e., those with the highest and lowest
GI50s) for the training of the classifier leaves open the possibility
that the training samples are atypical in their lack of chemosen-

sitivity-tissue type correlation. For example, the classification of
cytochalasin D sensitivity (Fig. 4) is in part correlated with tissue
type in that the ovarian cancer cell lines tend to be resistant,
whereas the central nervous system (CNS) cell lines are sensitive.
Notably, neither ovarian nor CNS cell lines were used to train the
classifier.

For some compounds, gene-based classification was no more
accurate than random classification. There are several possible
explanations for this. First, we measured the expression level of
only 6,817 genes, estimated to represent roughly one-fifth of the
human genome (14). It is possible that if the entire genome were
analyzed, the number of compounds with predictable chemo-
sensitivity would increase. It is also conceivable that alternative
gene selection or machine learning algorithms would be more
successful. Second, we limited ourselves to a binary classification
scheme, whereas a multiclass or continuous definition of sensi-
tivity may be more appropriate for some compounds. It is likely
that larger data set would be required for such efforts. Finally,
for some compounds, chemosensitivity may be governed by
mechanisms that are not readily revealed at the transcriptional
level, such as posttranscriptional regulation, posttranslational
modification, proteasome function, or protein–protein interac-
tions. The ability to increase prediction accuracy by capturing

Fig. 4. Top 30 classifier genes for cytochalasin D (NSC-209835). The red and blue matrix represents the normalized expression patterns for each gene across
the cell lines (brightest red indicates highest relative expression, darkest blue indicate, lowest relative expression). (Top) The sensitive and resistant cell lines are
shown. Tissue of origin for each cell line is indicated as follows: L, lung (nonsmall cell); C, colon; B, breast; O, ovarian; E, leukemia; R, renal; M, melanoma; P,
prostate; N, central nervous system. Lines used as training sets are shown in bold. The list at right shows the weighting factor [measure of correlation; weights
were computed by using negative log(GI50) values and thus a positive value correlates with sensitivity], the GenBank accession number, and the gene name. Genes
whose products are known to have cytoskeletal andyor extracellular matrix functions are shown in bold.
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such information by using proteomic approaches, for example,
remains to be determined.

To achieve the goal of personalized medicine, chemosensitiv-
ity prediction must be extended beyond cell line models to
include the analysis of primary patient material, and the pre-
diction of intermediate levels of chemosensitivity that were not
addressed in our experiments. Although few clinical studies have
been reported to date, early indications are that clinically
relevant gene expression patterns can be extracted from tumor
samples (8, 12, 15, 16). However, the current study demonstrates
the potential for screening samples for genetic determinants of
drug sensitivity and, thus, suggests that the goal of individual-

izing patient treatment plans based on genetic features of a
tumor may indeed be feasible.
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