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Abstract 

This document provides supplementary and detailed analysis information not included in the 
paper. Other sources of information and the original data sets can be found at our web site 
www.broad.mit.edu/cancer/pub/mediastinal. 
 

Case selection and Histologic classification 

Frozen diagnostic tumor specimens from 34 MLBCL patients and 176 DLBCL patients were 
analyzed according to an Institution Review Board-approved protocol. MLBCL tumor specimens 
were derived from mediastinal masses or contiguous nodal biopsies and DLBCLs were all nodal 
tumor specimens. Primary MLBCLs were identified using clinical criteria (predominant 
mediastinal mass with or without local extension and no extrathoracic disease) and pathologic 
features. The histopathology and immunophenotype of each primary MBLCL was reviewed and 
expert hematopathologist to confirm diagnosis.  

 

Target cRNAs of oligonucleotide microarrays 

Total RNA was extracted from each frozen tumor specimen and biotinylated cRNAs were 
generated as previously described [1]. Samples were hybridized overnight to Affymetrix U133A 
and U133B oligonucleotide microarrays (Affymetrix, Santa Clara, CA) which include probe sets 

www.broad.mit.edu/cancer/pub/mediastinal


from over 44,000 genes.  Arrays were subsequently developed with phycoerythrin-conjugated 
streptavidin (SAPE) and biotinylated antibody against streptavidin, and scanned to obtain 
quantitative gene expression levels [1].  

Preprocessing and Re-scaling 

The raw expression data consists of the Affymetrix’s scanner “signal” units as obtained from 
Affymetrix's GeneChip MAS5.  This raw data is re-scaled to account for different chip 
intensities. Each sample (column) in the data set is multiplied by the factor 
constant/sample_intensity, where sample_intensity denotes the sample’s average intensity (i.e., 
the sample’s expression level averaged across all probe sets in chips A and B combined); and 
constant is the same quantity for all samples (chosen to be the average intensity of the median 
sample).  

After this preprocessing, genes were ranked according to a variation filter so as to give higher 
priority to genes with expression values showing maximal variation across the samples being 
analyzed.  For this purpose, we used the median absolute deviation (MAD) as our ranking score. 
The MAD for gene g, denoted as MAD(g), was computed as follows: 
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where N is the number of samples, gi denotes g’s expression level in sample i, and med(g) 
denotes the median expression level of gene g. 

Gene expression differential analysis and permutation test 

The top 15,000 genes from the U133A and U133B Affymetrix chips were selected based on their 
ranking as measured by MAD. From within this 15,000-gene pool, genes correlated with the 
class distinction of interest (1=“mediastinal” vs. 0=“non-mediastinal”) were identified by ranking 
them according to their signal-to-noise ratio (SNR) [1, 2], 
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where µi and σi denote, respectively, the sample mean and sample standard deviation within class 
i=1,0. Similar rankings were obtained by using the median in place of the mean, or by using the 
t-statistic in place of the SNR. A Monte Carlo simulation of the permutation distribution of the SNR’s 
was performed by permuting the sample labels indicating class membership (n=1000); thereafter, the 
observed values in the data were compared to the 99th percentile of the permutation. Notice that the 
permuted SNRs are associated to a gene’s rank, not its identity. That is, the p-value for the kth 
ranked gene is computed with respect to the empirical null distribution obtained by repeating the 
following steps multiple times: i) shuffle the class labels; ii) compute the associated SNR’s for 
all genes; and iii) select the kth SNR (irrespective of the identity of the gene achieving this score). 
In so doing, the resulting p-values account for the effect of multiple testing. Furthermore, by 
shuffling the class labels, the expression correlation among the genes is preserved, thus making 
the permutation test more stringent (i.e., making it harder to achieve statistical significance). 



Classification 

The discriminatory power of the gene expression signature was also evaluated by building 
classifiers for the MLBCL vs. DLBCL distinction. To this end, we used both the naïve-Bayes 
classifier and the weighted-voting classifier, and evaluated their error rates.  

The naïve-Bayes classifier 

The naïve-Bayes (NB) classifier [3] provides an estimate of the probability that a given sample 
belongs to one of the given classes. This is the class posterior probability P(C|g1,g2,…,gM), 
where C denotes the binary class variable taking values 1 (MLBCL) and 0 (DLBCL), and where 
g1,…,gM denote the M gene markers used for prediction. The NB classifier derives its name from 
the independence assumption on which it is built. This assumption asserts that, within each class, 
the expression level of a gene is independent of the expression level of other genes. The 
assumption is often unrealistic (naïve), but it allows for the parsimonious factorization of the 
probability of interest, and for its computation by a straightforward application of the Bayes 
theorem: 
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where P(C) denotes the prior probability of class membership, and P(gi|C) denotes the 
conditional probability distribution of a gene within a given class. Notice that to compute the 
posterior probability of interest all that is needed is an estimate of the prior probability of class 
membership P(C), and of the conditional probabilities P(gi|C) for each gene marker gi. For 
example, if we use our 210-sample dataset as our training set (with 34 MLBCLs and 176 
DLBCLs), the prior P(C) can be estimated as 
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The conditional probability P(gi|C=1) for any gene gi is estimated by fitting a Normal 
distribution to the set of 34 observations of gi in the MLBCL class. Similarly, the conditional 
probability P(gi|C=0)  is estimated by fitting a Normal distribution to the set of 176 observations 
of gi in the DLBCL class. 

Once these quantities are estimated from data, the classification of a new sample can be 
performed by applying Equation (1) to the new sample, and assigning the sample to class 1 if 
P(C=1|g1, g2,…,gM)> P(C=0|g1, g2,…,gM), and to class 0 otherwise. 

The weighted-voting classifier 
The weighted-voting (WV) classifier [4] is very similar to the NB classifier (see the appendix in 
[4]). The WV classifier makes a weighted linear combination of relevant marker genes obtained 
in the training set to provide a classification scheme for new samples. The selection of the 
classifier input features (marker genes) is accomplished by computing a signal-to-noise ratio Sg = 



(µ1-u0)/(σ1+σ0). The class predictor is uniquely defined by the initial set of samples and marker 
genes.  In addition to computing Sg, the algorithm also finds the decision boundaries (half way) 
between the class means: Bg = (µ1+u0)/2 for each gene g.  To predict the class of a test sample y, 
each gene g in the feature set casts a vote: Vg(y)= Sg (gy – Bg), where gy denotes the expression 
level of gene g in sample y. The final vote for class 0 or 1 is computed as follows: 
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The sample y is assigned to class 1 if vote(y)>0, and to class 0 otherwise. The strength or 
confidence in the prediction of the winning class is (Vwin _ Vlose)/(Vwin + Vlose) (i.e., the relative 
margin of victory for the vote). 

Training and testing procedure 
With both classifiers, the following supervised learning procedure was followed: 

1. Build a classifier by leave-one-out cross validation (LOOCV). That is, for each sample repeat 
the following steps: i) hold out the given sample; ii) use the remaining samples as a training 
set to build a classifier; and iii) test the resulting classifier on the held-out sample.  

2. Each classifier is built by selecting the “marker” genes with the highest correlation with the 
target class as measured by SNR. Markers are selected in a balanced fashion. That is, when 
selecting M markers, M/2 markers will be selected as the most up-regulated for class 1, and 
the other M/2 as the most up-regulated for class 0. The marker selection is carried out within 
the CV loop. That is, when holding out a given sample, that sample is excluded from the 
computation of the SNR. 

3. Several models are built using different numbers M of marker genes and the final chosen 
model is the one that minimizes the total error in cross-validation. 

 

Since the two classes are heavily unbalanced (with the DLBCL class including 176 samples, and 
the MLBLC class including 34 samples), the error rate is computed as the average of the error 
rates within the two classes, referred to as balanced error rate.1 Figure 1.a reports the balanced 
210-sample LOOCV error rates for classifiers based on different numbers of genes/markers. 
Classifiers with numbers of genes ranging from 10 to 1000 were built and evaluated. The NB 
classifier with 100 genes achieved the best error rate of 11.33%, with 5 MLBCLs wrongly 
classified and 14 DLBCLs wrongly classified.  

                                                           
1 This approach yields an error rate that is in general higher than the simple proportion of samples wrongly 
classified. On the other hand, it is a more accurate way of reporting error rates when handling unbalanced classes. 
For example, if we were to report the simple error rate of the majority classifier (i.e., the classifier assigning all 
samples to the majority class) on our data, this would yield an error rate of 34/210=16%. The corresponding 
balanced error rate, on the other hand, would be 50%. 
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Figure 1: Balanced error rates computed by LOO-CV. a) Error rates based on 210 samples. b) Error rates based on 
the 159 samples remaining after the removal of the 51 samples with “mediastinum involvement” (see text). 

Notice that building classifiers based on different numbers of genes, and choosing the one that 
achieves the lowest error rate is not an entirely unbiased procedure, since we are using the “test 
set” multiple times. To compute a more rigorous estimate of the error rate we can expect to attain 
on new data, we also used a 2-level cross-validation procedure. This procedure uses the CV 
outer-loop to estimate the error rate reported (as described above). Within each outer-loop 
iteration, another cross-validation loop (inner-loop CV) is carried out to choose the best number 
of features to use. This means that classifiers based on different numbers of features can be used 
in each of the outer-loop CV iterations. Based on this procedure, the estimated balanced error 
rate for the NB (WV) classifier was 16.07% (16.88%), with 9 MBLCL errors and 10 DLBCL 
errors (8 DLBCL and 18 MLBCL). The number of genes selected ranged from a minimum of 10 
to a maximum of 250, with a median number of 10 (min: 10, max: 50, median: 20). 

Within the set of 210 samples, a subset of 51 samples was clinically diagnosed as DLBCL while 
having some level of mediastinum involvement. We reasoned that these samples would render 
the distinction between the two classes less sharp. Consequently, we built classifiers based on the 
remaining 159 samples (125 DLBCLs, 34 MLBCLs), and we tested them by LOOCV. Figure 1.b 
reports the balanced error rates for classifiers based on different numbers of genes/markers. As 
shown, this procedure yielded slightly lower error rates. The best classifier (a WV classifier 
based on 10 genes) achieved a balanced error rate of 10.28%, with 4 MLBCL errors and 11 
DLBCL errors. The 2-level CV error rate for the WV classifier is also 10.28% (4 MLBCL errors, 
10 DLBCL errors), with the number of genes selected ranging from a minimum of 10 to a 
maximum of 50, and with a median number of 10. 

Enrichment test 

We carried out an enrichment test [5] in order to assess the significance of the similarity between 
the Hodgkin Lymphoma (HL) signature and the MLBCL signature. The HL signature was 
defined using a set of genes independently identified by Kuppers et al. as differentially expressed 
in Hodgkin’s Reed-Sternberg (HRS) cell lines when compared with normal B-cells using 
Affymetrix U95 oligonucleotide arrays [6]. The U95 probes were mapped to U133 probes 



according to the mapping provided by Affymetrix. The similarity between the two signatures 
was assessed based on the following procedure:  

1. 15,000 genes were selected from the U133A/B chips according to a MAD-based variation 
filter, and ranked according to their SNR with respect to the “MLBCL vs. DLBCL” class 
membership (i.e. ranked from the most under-expressed to the most over-expressed genes in 
MLBCL). 

2. The set of 294 genes identified in [6] as under-expressed in HL were located within the 
ranked list of 15K genes, and their proximity to the under-expressed end of the list measured 
by a Kolmogorov-Smirnoff (KS) score (with a higher score corresponding to a higher 
proximity).  

3. Permutation of the “MLBCL vs. DLBCL” sample labels, associated re-ranking of the 15K 
genes, and computation of the corresponding KS score were performed multiple times 
(n=1000), so as to compare the observed KS score with the KS score that could be expected 
by chance under a random class labeling. An empirical p-value was thus computed to 
quantify the significance of the similarity between the HL signature and the MLBCL 
signature.  

4. An alternative, less stringent, method to compute an empirical p-value is based on the 
computation of the KS score for a random set of 294 genes (since 294 is the number of genes 
comprising the HL signature) multiple times. This allows for the assessment of how likely it 
would be to observe a KS score equal to or greater than the one actually observed, if a 
random set of genes were to be selected. The drawback of this method is that it discounts 
possible correlations among the genes comprising the actual HL signature. 

A similar procedure can be adopted to compare the gene signatures with respect to the over-
expressed genes. To this end, we can use the set of 195 genes identified in [6] as significantly 
over-expressed in HL cell lines, and test for their proximity to the over-expressed end of the list.  

A graphical rendition of the computation of the KS score for the set of over-expressed and under-
expressed genes is shown in Figure 2.a and Figure 2.b, respectively. In Figure 2.a, the bottom 
panel indicates with vertical bars the location of the over-expressed HL genes within the ranked 
set of 15K genes, with the genes over-expressed in MLBCL to the left, and the under-expressed 
genes to the right. The top panel shows the assignment of “rewards” and “penalties” to the 
overall KS score as the list of 15K ranked genes is scanned from the over-expressed end (left) to 
the under-expressed end (right) of the ranking. Every “hit” (i.e., the encounter of a Hodgkin gene 
during the scan) increments the KS score, and every “miss” (i.e., the encounter of a non-Hodgkin 
gene) decrements the score, resulting in the step-wise curve showed. The final score corresponds 
to the highest value in the plot (in the y-axis). High enrichment would correspond to a steep 
climb upward to the left. Lack of enrichment would correspond to a lack of clear upward trend in 
the curve. We denote with pmin the less stringent p-value described in item 4 above, and with pmax 
the more stringent empirical p-value obtained by permuting the class labels, ad described in item 
3 above. All p-values were computed based on 1000 permutation iterations. To make sure that 
the results of the analysis were not overly dependent on the gene pool used (the 15K genes 
selected by MAD), we repeated the analysis based on the entire set of unfiltered 44K genes, and 
we obtained similar p-values. 



 

Figure 2: Kolmogorov-Smirnof-based enrichment test. a) Evaluation of the similarity between the HL signature and 
the mediastinal signature with respect to the set of up-regulated HL genes. b) Evaluation of the similarity between 
the HL signature and the mediastinal signature with respect to the set of down-regulated HL genes. 

As shown in Figure 2, the enrichment analysis indicates that the observed relationship between 
the under-expressed genes in MLBCL and HL is highly significant (pmax=0.012, pmin<0.001). 
There is a less significant similarity between the over-expressed genes in HL RS cell lines and 
primary MLBCLs (pmax=0.213, pmin=0.007). This likely reflects the contribution of tumor 
microenvironment to primary MLBCL and HL signatures and the absence of these features in the 
signatures of isolated HL RS cell lines [6]. 
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