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Diffuse large B-cell lymphomas (DLBCLs) are the most common
lymphoid neoplasms, composing 30–40% of adult non-Hodgkin
lymphomas1. Although a subset of DLBCL patients are cured
with current chemotherapeutic regimens, most succumb to the
disease2. Clinical prognostic models such as the International
Prognostic Index (IPI) have been developed to identify DLBCL
patients who are unlikely to be cured with standard therapy3.
However, the clinical factors of the IPI (age, performance status,
stage, number of extranodal sites and serum lactate dehydroge-
nase (LDH))3 are likely to be surrogate markers for the intrinsic
molecular heterogeneity in this disease. Therefore, it is not sur-
prising that IPI is imperfect in its identification of high-risk pa-
tients. In addition, in the absence of molecular insights into the
clinical heterogeneity of DLBCL, therapeutic approaches to
high-risk patients have primarily included increased doses of
conventional chemotherapeutic agents and additional stem-cell
support4. However, the value of high-dose therapy has not been
confirmed in this setting4, underscoring the need to identify
more rational, molecularly defined approaches to treatment.

Molecular analyses of clinical heterogeneity in DLBCL have
largely focused on individual candidate genes, with particular

emphasis on genes with known functions in other malignancies
or in normal lymphocyte development. Examples include adhe-
sion molecules that influence the trafficking of normal activated
B cells and tumor cells5,6, proteins that regulate apoptosis in
other B-cell lymphomas and normal B-cell subpopulations7–9,
and angiogenic peptides that promote the development of an ef-
fective tumor vasculature10. Additional individual genes, such as
BAL (B-aggressive lymphoma), have been identified on the basis
of their differential expression in fatal high-risk DLBCL and
cured low-risk tumors11. Although some of these candidate genes
correlate with DLBCL treatment outcome, a comprehensive
molecular approach to outcome prediction is still lacking.

The recent development of DNA microarrays provides an op-
portunity to take a genome-wide approach to predicting DLBCL
treatment outcome. One strategy is to use gene-expression pro-
filing to extend current biological insights into the disease. Such
an approach was recently described by Alizadeh et al., who built
on the hypothesis that DLBCL derives from normal B cells lo-
cated within the germinal centers (GCs) of lymphoid organs12,13.
Customized cDNA (‘lymphochip’) microarrays enriched in genes
related to the GCs were used to obtain the gene-expression pat-
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Diffuse large B-cell lymphoma (DLBCL), the most common lymphoid malignancy in adults, is
curable in less than 50% of patients. Prognostic models based on pre-treatment characteristics,
such as the International Prognostic Index (IPI), are currently used to predict outcome in DLBCL.
However, clinical outcome models identify neither the molecular basis of clinical heterogeneity,
nor specific therapeutic targets. We analyzed the expression of 6,817 genes in diagnostic tumor
specimens from DLBCL patients who received cyclophosphamide, adriamycin, vincristine and
prednisone (CHOP)-based chemotherapy, and applied a supervised learning prediction method
to identify cured versus fatal or refractory disease. The algorithm classified two categories of pa-
tients with very different five-year overall survival rates (70% versus 12%). The model also ef-
fectively delineated patients within specific IPI risk categories who were likely to be cured or to
die of their disease. Genes implicated in DLBCL outcome included some that regulate responses
to B-cell–receptor signaling, critical serine/threonine phosphorylation pathways and apoptosis.
Our data indicate that supervised learning classification techniques can predict outcome in
DLBCL and identify rational targets for intervention.
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terns of DLBCL and normal lymphocytes, including B cells from
GC B cells and in vitro-activated peripheral blood (PB) B cells.
Using the unsupervised learning technique of hierarchical clus-
tering, Alizadeh et al.12 demonstrated that the DLBCLs fell into
two groups: those with expression patterns similar to normal GC
B cells, and those with expression patterns similar to in vitro-acti-
vated PB B cells. Alizadeh et al.12 found the GC-like DLBCLs to
have a more favorable outcome compared with the PB-like
DLBCLs, suggesting that putative cell of origin might be predic-
tive of response to treatment in this disease.

An alternative strategy for the prediction of DLBCL outcome is
to use supervised learning methods to directly develop a gene-
expression–based outcome model that is independent of a priori
hypotheses. Here we report the successful prediction of outcome
in a series of 58 DLBCL patients using gene-expression data from
oligonucleotide microarrays together with supervised learning
methods. Notably, this supervised approach identifies molecular
correlates of outcome that are independent of the previously de-
scribed putative cell of origin12.

Delineating DLBCL from follicular lymphoma
We have described a supervised learning classification algorithm
(‘weighted voting’) which delineated acute leukemias that arise
from different lineages (lymphoid versus myeloid)14. Before at-
tempting to apply this method to distinguish cured versus
fatal/refractory DLBCLs, we investigated whether the algorithm
could identify tumors within a single (B-cell) lineage.
Specifically, we asked whether we could distinguish DLBCL from
a related GC B-cell lymphoma, follicular lymphoma (FL).
Although these two malignancies have very different clinical

presentations, natural histories and responses to therapy1,2, FLs
frequently evolve over time and acquire the morphologic and
clinical features of DLBCLs. In addition, a subset of de novo
DLBCLs have the t(14;18) chromosomal translocation character-
istic of most FLs (ref. 7). The t(14;18) results in overexpression of
the anti-apoptotic protein BCL2 (ref. 15); however, the mecha-
nism by which most DLBCLs circumvent normal apoptotic sig-
nals is not known.

Pre-treatment biopsies obtained from 77 patients with 
DLBCL (n = 58) or FL (n = 19) were subjected to transcript-
ional profiling using oligonucleotide microarrays containing 
probes for 6,817 genes. The gene-expression data are 
available in their entirety in Supplementary Information
(www.genome.wi.mit.edu/MPR/lymphoma). The 6,817 genes
were sorted by their degree of correlation with the DLBCL versus
FL distinction, and the most highly correlated genes are shown
in Fig. 1. Genes expressed at higher levels in DLBCL patients
than in FL patients included known DLBCL markers such as lac-
tate dehydrogenase3 and transferrin receptor (Fig. 1). Genes asso-
ciated with cellular proliferation (cyclin B1 and a CDC47
homolog) and invasion and metastasis (cathepsins B and D)
were also expressed at higher levels in DLBCLs versus FLs.
DLBCLs also overexpressed: 1) the high-mobility group protein
isoforms I and Y (HMGIY), known to be a MYC target and en-
coded by a potential oncogene16; 2) the hematopoietic cell ki-
nase (HCK) which has been linked with CD44 signaling17; and 3)
inhibitors of apoptosis such as the carbohydrate-binding pro-
tein, galectin 3 (ref. 18) and the B-cell lymphoma-2 (BCL2)-re-
lated protein, BFL1A1 (ref. 19; also known as BCL2A1).

BFL1A1 overexpression in DLBCL is of particular interest be-
cause this anti-apoptotic molecule is induced by CD40 signaling
and is required for CD40-mediated B-cell survival20. BFL1A1 is
also a direct transcriptional target of nuclear factor-κB (NF-κB),
which suppresses both chemotherapy- and tumor necrosis fac-
tor–associated apoptosis21,22. These observations raise the possi-
bility that BFL1A1 overexpression may represent an important
anti-apoptotic mechanism for reducing the chemosensitivity of
DLBCLs.

Genes overexpressed in FLs compared with DLBCLs included
additional regulators of apoptosis such as human programmed
death-1 (HPD1)23 and WSL-LR (also known as TNFRSF12)24. FLs
also had more abundant expression of genes encoding cytoskele-
tal components (ankyrin 2) and adhesion molecules (α4 integrin)
and genes expressed by follicular dendritic cells (clusterin25) and
infiltrating T cells (T-cell receptor-β, CD3-ε, CD3-δ, CD40 ligand,
TXK tyrosine kinase26, T-cell activation antigens, CD69 (ref. 27)
and V7 (ref. 28)) and the T-cell chemoattractant, SLC (ref. 29; also
known as SCYA21). The presence of a prominent T-cell and follic-
ular dendritic-cell signature in the FLs also indicates that microar-
ray profiling can be used to capture additional non-malignant
components of the tumor microenvironment. This non-malig-
nant component of the FL versus DLBCL signature would have
been missed had purified tumor cells, rather than primary tumor
specimens, been analyzed.

Fig. 1 Expression profiles of DLBCLs and FLs. The genes that were ex-
pressed at higher levels in DLBCL are shown on top, the ones which were
more abundant in FL, on bottom. Red indicates high relative expression;
blue, low expression. Color scale at bottom indicates relative expression in
standard deviations from the mean. Each column is a sample, each row is a
gene. Expression profiles of the 58 DLBCLs are on the left (58 columns);
profiles of the 19 FLs are on the right (19 columns).
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To determine whether the gene-expression patterns associ-
ated with DLBCL and FL (Fig. 1) were sufficiently robust to pre-
dict the lymphoma type of an unknown sample, we used the
weighted-voting algorithm, which calculates the weighted
combination of informative marker genes to make a class dis-
tinction (that is, DLBCL versus FL)14. To avoid the statistical
problem of over-estimating prediction accuracy that occurs
when a model is trained and evaluated with the same samples,
we used a ‘leave-one-out’ cross-validation testing method. In
this procedure, 1 of the 77 samples 
is withheld, and the remaining 76
samples are used to train a gene-
expression–based model and predict
the class of the withheld sample. 
The process is repeated until all 77 
samples are predicted in turn. A 
30-gene predictor correctly classified
71 of 77 tumors (91%) with respect 
to the DLBCL versus FL distinction 
(P < 1 × 10–9 compared with random
prediction).

Predicting outcome in DLBCL
The success in distinguishing DLBCL
from FL with supervised learning sug-
gested that a similar approach might
be used to delineate clinically relevant
subsets of DLBCL. Long-term clinical
follow-up was available for all 58

DLBCL patients in the study. These patients were divided into
two groups: those with cured disease (n = 32) and those with
fatal or refractory disease (n = 26).

The genes most highly correlated with the cured versus
fatal/refractory distinction included genes that have been previ-
ously associated with DLBCL outcome, such as VEGF, linked
with adverse outcome10 and overexpressed in fatal/refractory
DLBCLs, and E2F, associated with favorable outcome30 and over-
expressed in cured DLBCLs (Fig. 2). The presence of 
known prognostic markers among our outcome-correlated genes
indicates that the gene-expression signatures are likely 
to be bona fide.

We next used a supervised learning classification approach
(weighted-voting algorithm and cross-validation testing) to de-
velop a DLBCL outcome predictor and assess its accuracy.
Predictors containing between 8 and 16 genes all yielded statisti-
cally significant outcome predictions, with the highest accuracy
obtained using 13 genes (Fig. 3). Although each of the cross-vali-
dation loops generated a new 13-gene model, each of these mod-
els contained mostly the same genes (see Methods and
www.genome.wi.mit.edu/MPR/lymphoma).

The predictor separated the 58 patients, who had a 5-year
overall survival (OS) of 54% (Fig. 4a), into 2 groups: those pre-
dicted to be cured and those predicted to have fatal/refractory
disease. Kaplan–Meier survival analyses indicated that the pa-
tients predicted to be cured had significantly improved long-
term survival compared with those predicted to have
fatal/refractory disease (5-year OS, 70% versus 12%; nominal log
rank P-value = 0.00004; Fig. 4b). Other classification algorithms,
including support vector machines (SVM) and k-nearest neigh-
bors (k-NN) performed similarly (5-year OS for SVM, 72% versus
12%, P = 0.00002; for k-NN, 68% versus 23%, P = 0.001;
www.genome.wi.mit.edu/MPR/lymphoma). These results indi-

Fig. 2 Expression profiles of cured and fatal/refractory DLBCLs. The genes
that were expressed at higher levels in cured disease are shown on top,
those that were more abundant in fatal disease are shown on bottom. Red
indicates high level expression; blue, low level expression. Color scale at
bottom indicates relative expression in standard deviations from the mean.
Each column is a sample, each row a gene. Expression profiles of the 32
cured DLBCLs are on the left; profiles of the 26 fatal/refractory tumors are
on the right.

Fig. 3 Genes included in the DLBCL outcome model. Genes expressed at higher levels in cured disease are
listed on top and those that were more abundant in fatal disease are shown on bottom. Red indicates high
expression; blue, low expression. Color scale at bottom indicates relative expression in standard deviations
from the mean. Each column is a sample, each row a gene. Expression profiles of the 32 cured DLBCLs are
on the left; profiles of the 26 fatal/refractory tumors are on the right. Models with the highest accuracy were
obtained using 13 genes. Although each of the 58 cross-validation loops generates a new 13-gene model, 7
of the genes were common to all 58 models; 4 additional genes were included in 54 or more models and 2
genes were included in 23–34 models.
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cate the existence, at diagnosis, of a gene-expression signature of
outcome in DLBCL.

The clinically based IPI outcome predictor is effective in pre-
dicting the outcome of subsets of DLBCL pa-
tients3. In the current series, all of the IPI-defined
H-risk patients died of their disease (Fib. 4c).
However, the IPI incorrectly predicted the out-
come of many of the patients in the other IPI risk
groups (high intermediate (HI), low intermediate
(LI) and low (L)) (Fig. 4c). For this reason, we in-
vestigated whether the gene-expression–based
outcome predictor contained additional informa-
tion not captured by the IPI. L/LI-risk patients
with the ‘cured’ gene-expression signature had
significantly higher OS rates than L/LI-risk pa-
tients with the ‘fatal/refractory’ signature (5-year
OS, 75 versus 32%; P = 0.02) (Fig. 4d). Similarly,
the outcome of HI-risk patients could be further
predicted by the application of the gene-expres-
sion model (5-year OS, 57 versus 0%; P = 0.02)
(Fig. 4e). These results indicate that the microar-
ray-based outcome predictor provides additional
information not reflected in the clinical prognos-
tic model and suggests a possible strategy for fur-
ther individualization of patient treatment.
However, the gene-expression–based predictor
did not eliminate outcome differences between
L/LI-risk and HI-risk patients (Fig. 4d and e), sug-
gesting that the clinical and molecular models
contain at least partially independent informa-
tion. Additional studies will be required to deter-
mine how to optimally combine such models.

Validating the model
Having defined an outcome predictor for DLBCL,
we investigated the connection, if any, between

this model and the cell-of-origin classification described 
by Alizadeh et al. Such comparisons are admittedly 
difficult, given that, 1) different genes were measured on the ar-
rays, 2) the microarray technology was different (oligonu-
cleotide versus cDNA arrays), 3) different computational
approaches were employed, and 4) different patient samples
were studied. Nevertheless, we determined that 90 of the previ-
ously described cell-of-origin signature genes12 were also 
represented on our oligonucleotide arrays (see Methods and
www.genome.wi.mit.edu/MPR/lymphoma).

We first used a hierarchical clustering algorithm to sort the
DLBCL samples of Alizadeh et al. based on expression of the 90
cell-of-origin signature genes represented on both the cDNA and
oligonucleotide microarrays. Two major branches of the hier-
archical tree were observed; these branches were closely associ-
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Fig. 4 Overall survival predictions for DLBCL study patients. a, 5-year OS
for the entire study group. 33 of 58 DLBCL study patients remained alive at
a median of a 58-month follow-up. The predicted 5-year OS for the group
as a whole was 54%. b, 5-year OS for favorable and unfavorable risk groups
defined by the 13-gene model (70% versus 12%, P = 0.00004). Top line,
cured; bottom, fatal/refractory. c, 5-year OS for patients in L-risk (green
line), LI-risk (blue line), HI-risk (red line) and H-risk (orange line) categories
as defined by the IPI: L, 26 pts; LI, 11 pts; HI, 17 pts; H, 2 pts. d, 5-year OS
for combined L/LI-risk patients with favorable or unfavorable disease as de-
fined by the molecular model (75% versus 32%, nominal P = 0.02) Top
line, cured; bottom, fatal/refractory. e, 5-year OS for HI-risk patients with
favorable or unfavorable disease as defined by the molecular model (57%
versus 0%; nominal P = 0.02). Top line, cured; bottom, fatal/refractory.

Fig. 5 Predictive value of GC-B-cell and activated B-cell signatures. a and b, The GC and acti-
vated B-cell markers common to our dataset (b) and that of Alizadeh et al.12 (a). (90 common
UniGene clusters) were hierarchically clustered45 with respect to patient samples. In each
dataset, 2 major branches of the hierarchical tree were observed. In the Alizadeh et al. dataset,
the 2 major branches corresponded exactly to the previously described cell-of-origin distinction
(GC-like DLBCLs, orange and activated B-like DLBCLs, blue). Genes (rows) correlated with these
2 categories are similarly indicated with the same color scheme. In our dataset, the 2 major
branches of the hierarchical tree were also associated with putative cell of origin. Genes corre-
lated with the left branch were predominantly GC-like (orange) genes, whereas genes selec-
tively expressed in the right branch were predominantly activated B-like (blue) genes (P =
.00001, χ2 test). In the bottom panels, the 5-year OS for patients whose tumors exhibited the
GC (top lines) and activated B-cell (bottom lines) signature are shown.
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ated with the cell-of-origin distinction12, confirming that the 90
overlapping signature genes were sufficient to make this deter-
mination (Fig. 5a). As expected, the 90-gene cell-of-origin dis-
tinction was associated with outcome in the DLBCL samples of
Alizadeh et al. (Fig. 5a).

We then used these same 90 genes to cluster our own 58
DLBCL samples (Fig. 5b). Again, two major branches of the hier-
archical tree were observed, and these branches were highly cor-
related with the cell-of-origin distinction (P = 0.00001, χ2 test)
(Fig 5b). However, this distinction was not significantly corre-
lated with patient outcome in our DLBCL series (Fig. 5b). This
observation suggests that although the signature genes may re-
flect cell of origin, they do not explain a significant portion of
the clinical variability seen in this DLBCL dataset.

We next investigated whether we could find support for our
outcome predictor in the expression data of Alizadeh et al. Of
the 13 genes in our supervised DLBCL outcome predictor, 3 were
represented on the lymphochip: NOR1 (also known as NR4A3),
PDE4B and PKC-β (also known as PRKCB1). When evaluated as
single markers in the dataset of Alizadeh et al., NOR1 (P = 0.05)
and PDE4B (P = 0.07) were clearly correlated with outcome.
Multiple PKC-β cDNAs are present on the lymphochip; these
clones gave discordant expression results in the DLBCL patients,
perhaps reflecting varying degrees of specificity for the β iso-
forms of PKC. However, two clones (clone 1308435 and
685194), specific for the PKC-β2 isoform, were indeed correlated
with outcome in the DLBCL patient series of Alizadeh et al. (P =
0.04). These results from an independent dataset confirm our
initial observations and highlight the value of publicly accessi-
ble gene-expression databases for rapid, computational valida-
tion of hypotheses.

The potential extension of microarray-based outcome predic-
tion to the clinical setting was further explored using immuno-
histochemical detection methods. For this purpose, we
generated a tissue array containing the study DLBCLs for which
formalin-fixed, paraffin-embedded tumor tissue was available (n
= 21). PKC-β protein expression was analyzed because of the crit-
ical role of PKC pathways in B-cell signaling and the commercial
availability of a monoclonal antibody against PKC-β known to
function in immunohistochemistry assays. PKC-β protein ex-
pression was highly associated with microarray-determined
transcript abundance in the DLBCL specimens (P = 0.08, Fisher

exact test; Fig. 6). In addition, PKC-β protein expression was
closely associated with clinical outcome in the DLBCL patients
(P = 0.03). This result both validates the microarray measure-
ments, and demonstrates how microarray-based studies can be
extended using methods that are more widely available in rou-
tine clinical practice.

Discussion
Herein, we report the successful prediction of outcome in a series
of DLBCL patients using oligonucleotide microarray gene-ex-
pression data and supervised learning methods. Genes impli-
cated in DLBCL outcome included ones that regulate responses
to B-cell–receptor signaling, critical serine/threonine phospho-
rylation pathways and apoptosis. For example, all three of the 
computationally validated microarray-based outcome genes,
NOR1, PDE4B and PKC-β, regulate apoptotic responses to 
antigen-receptor engagement and, potentially, cytotoxic
chemotherapy.

The mitogen-inducible nuclear orphan receptor (MINOR) or
NOR1 is overexpressed in cured, as opposed to fatal/refractory,
DLBCL (Figs. 2 and 4). NOR1 is a member of the nerve growth
factor-1B (NGF1B, also known as NR4A1) subfamily
(NGF1B/TR3/Nur77, Nurr-1) of nuclear orphan receptors31.
NGF1B family members are induced by antigen-receptor engage-
ment and external stressors such as seizures or ischemia31,32; in
addition, these factors directly promote the apoptosis of affected
cells31,33,34. Recent studies indicate that at least one NGF1B family
member (NGF1B/TR3/Nur77) translocates from the nucleus to
the mitochondria where it directly exerts its proapoptotic ef-
fects31,35. Given the functions of related NGF1B family members,
it is possible that NOR1 increases the apoptotic response to
chemotherapy in curable DLBCL.

The cyclic AMP (cAMP)-specific phosphodiesterase PDE4B is
overexpressed in fatal/refractory, as opposed to cured, DLBCL
(Figs. 2 and 4). PDE4s are the predominant class of phosphodi-
esterases in lymphocytes36,37, catalyzing the hydrolysis of cAMP
and terminating its activity37. cAMP-dependent protein kinase A
(PKA) signaling inhibits lymphocyte chemotaxis, cytokine re-
lease and cellular proliferation36. Because PDE4B reduces cAMP-
availability, the phosphodiesterase also limits the negative
effects of PKA signaling in lymphocytes. For this reason, PDE4A
and -4B inhibitors are being evaluated in the treatment of cer-
tain B-cell malignancies where they are reported to induce B-cell
apoptosis37,38. Together, these data suggest that PDE4B may also
be an attractive therapeutic target in fatal/refractory DLBCLs.

Like PDE4B, PKC-β is overexpressed in fatal/refractory, rather
than cured, DLBCL (Figs. 2,3 and 6). The alternatively-spliced
PKC-β1 and -β2 isoforms are the major PKC isoforms expressed
by B-lymphocytes39. The pivotal role of PKC-β in B-cell signaling
and survival was recently demonstrated in PKC-β-deficient mice
which have profoundly impaired humoral and B-cell prolifera-
tive responses40. In additional in vitro analyses, the consequences
of B-cell–receptor signaling were dependent upon associated ac-
tivation of PKC-β (ref. 41). In the presence of an intact PKC-β
pathway, B-cell–receptor engagement resulted in B-cell prolifera-
tion; however, B-cell–receptor signaling induced apoptosis when
mature B cells are either PKC depleted or stimulated in the pres-
ence of PKC inhibitors41. Taken together, these studies suggest
that PKC-β activity enhances B-cell proliferation and survival,
consistent with our observation that the enzyme is overex-
pressed in fatal/refractory DLBCLs. Recently, synergy between
PKC-β inhibitors and chemotherapeutic agents in murine tumor

Fig. 6 Immunohistochemical staining for PKC-β. a and b, Representative
PKC-β immunostaining of duplicate core samples from a cured DLBCL (a)
and a fatal DLBCL (b) are shown at low (×4, left) and high (×1000, right)
power.
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models42 has been reported, further suggesting that pharmaco-
logic inhibition of PKC-β may have a therapeutic role in the fu-
ture treatment of fatal/refractory DLBCL.

These studies demonstrate the potential of DNA microarray-
based recognition of gene-expression patterns for the prediction
of outcome in DLBCL patients. This work also illustrates the im-
portant difference between unsupervised (clustering) and super-
vised machine learning analytical approaches. The previously
reported cell-of-origin distinction12 was originally identified
using an unsupervised clustering algorithm and this distinction
was subsequently associated with disease outcome. In our series,
the cell-of-origin distinction was not associated with significant
outcome differences (Fig. 5), suggesting that additional factors
may be important in determining DLBCL response to therapy.

One limitation of the supervised classification method em-
ployed here is that it reduces the classification problem to a di-
chotomous distinction (cured versus fatal/refractory disease).
However, it is likely that these distinct clinical behaviors are ex-
plained by different molecular mechanisms in different patients.
More refined outcome prediction may thus require the use of al-
ternative feature selection algorithms capable of capturing more
complex DLBCL substructure, or the application of non-linear
classification strategies. Moreover, optimal outcome prediction
may require not only gene-expression data but also the inclusion
of tumor genotype information.

Nevertheless, the DLBCL outcome-correlated genes described
here were highly informative, including key intermediaries in
signaling pathways that regulate apoptotic responses to receptor
engagement, and potentially, to cytotoxic therapy. These studies
suggest strategies for both optimizing the use of existing therapy
for DLBCL and developing more rationally designed therapies in
this disease. The computational validation of our DLBCL out-
come predictor using publicly available gene-expression data-
bases further illustrates the important role of computational
genomics in biomedical research.

Methods
Samples. Frozen diagnostic nodal tumor specimens from 58 DLBCL pa-
tients and 19 FL patients were analyzed according to an Institutional Review
Board approved protocol. The histopathology and immunophenotype of
each tumor were centrally reviewed to confirm diagnosis and 
uniform involvement with tumor. The DLBCL study patients were those for
whom frozen tumor tissue and complete clinical information (presenting
clinical characteristics, treatment records and long-term follow-up) 
were available. Treatment records of all 58 DLBCL patients were reviewed
to confirm that patients had received adequate doses of cyclophos-
phamide, adriamycin, vincristine and prednisone (CHOP)-like combination
chemotherapy2 for 6 or more cycles or until documented disease progres-
sion and to document outcome and clinical IPI risk group3. The IPI was not
determined in 2 patients because of missing LDH levels in these patients.
DLBCL study patients (predicted 5-year OS 54%, median follow-up 58
months) were divided into 2 discrete categories: 1) 29 patients who
achieved CR and remained free of disease plus 3 additional patients who
died of other causes (total of 32 ‘cured’ patients); and 2) 23 patients who
died of lymphoma plus 3 additional patients who remained alive with re-
current refractory or progressive disease (total of ‘fatal/refractory’ 26 pa-
tients).

Target cRNAs and oligonucleotide microarrays. Total RNA was extracted
from each frozen tumor specimen and biotinylated cRNAs were generated
as described43 and as detailed (see Supplementary Information). Samples
were hybridized overnight to Affymetrix HU6800 oligonucleotide arrays
(Affymetrix, Santa Clara, California)14. Arrays were subsequently developed
with phycoerythrin-conjugated streptavidin (SAPE) and biotinylated anti-
body against streptavidin, and scanned to obtain quantitative gene-expres-

sion levels14,43. The raw gene-expression values were then scaled in order to
account for any minor differences in global chip intensity. Expression levels
below 20 units were assigned a value of 20, and those exceeding 16,000
units were assigned a value of 16,000. Genes whose expression did not vary
across the dataset were removed (see Supplementary Information).

Supervised prediction. Classes (classes 0 and 1) were defined based on
morphology (DLBCL versus FL) or treatment outcome (cured versus
fatal/refractory disease). Marker genes were then identified using a 
signal-to-noise calculation: Sx = (µclass0 – µclass1) ÷ (σclass0 + σclass1) where, for 
each gene, µclass0 represents the mean value of arrays with true class equal to
class 0, and σclass0 represents the standard deviation of class 0 samples14.
Thereafter, a weighted-voting classification algorithm was applied as 
previously described, and was tested by ‘leave-one-out’ cross-
validation14. The total number of prediction errors in cross-validation 
was calculated using a variable number of genes, and a final model 
chosen which minimized cross-validation errors. Analyses of error 
rates, confusion matrices (false negatives versus false positives) 
and Kaplan–Meier survival curves were performed using S-Plus
(http://www.splus.mathsoft.com/products/splus/splusintro.html). The log-
rank test was used to assess the differences between the survival curves and
nominal P-values were calculated.

The P-value for the prediction of lymphoma type (DLBCL versus FL) was
predicted using the proportional chance calculation44 as described
(http://marketing.byu.edu/htmlpages/tutorials/discriminant.htm).

Analysis of lymphochip microarray data. The raw lymphochip data from
the 40 DLBCL specimens and the associated outcome information was ob-
tained from the Lymphoma/Leukemia Molecular Profiling Project
(http://llmpp.nih.gov/lymphoma). RAT2 values were pre-processed by set-
ting minimum values to 0 and normalizing arrays to a mean value of 0 and
variance of 1. Computational model validation was performed by identify-
ing genes from our outcome predictor (Fig. 3) that were represented on the
lymphochip. For the lymphochip data, we mapped the clone IMAGE (inte-
grated molecular analysis of genomes and their expression) numbers to
GenBank accession numbers (using the list at http://llmpp.nih.gov/lym-
phoma/data/clones.txt) and then mapped the accession numbers to
UniGene clusters (National Center for Biotechnology Information,
Bethesda, Maryland). Similarly, we mapped accession numbers for our
oligonucleotide array data to UniGene clusters. Predictors using single
genes (PKC-β, PDE4B, MINOR/NOR1) were constructed by finding the
boundary halfway between the classes (bx = (µclass0 + µclass1) ÷ 2) in the dataset
and predicting the unknown sample according to its gene-expression value
with respect to that boundary. This method is equivalent to performing
weighted voting with only 1 gene.

The 90 UniGene clusters common to both arrays are represented by 139
clones in the data of Fig. 3c of Alizadeh et al. and by 100 probe sets on the
oligonucleotide arrays. The DLBCL series of Alizadeh et al. and our DLBCL
series were separately clustered using these common cell-of-origin signa-
ture genes by average linkage hierarchical clustering, and the results visual-
ized using TreeView (from M. Eisen)45.

Immunohistochemical staining. Five representative 0.6-mm cores were
obtained from diagnostic areas of each paraffin-embedded formalin-fixed
DLBCL tumor and inserted in a grid pattern in a single-recipient paraffin
block using a tissue arrayer (Beecher Instruments, Silver Spring, Maryland).
Five-micron sections cut from this ‘tissue array’ were stained for PKC-β
using an immunoperoxidase method. Briefly, slides were deparaffinized
and pre-treated in 1 mM EDTA (pH 8.0) for 20 min at 95 °C. All further
steps were performed at room temperature in a hydrated chamber. Slides
were pre-treated with Peroxidase Block (DAKO, Carpinteria, California) for
5 min to quench endogenous peroxidase activity, and a 1:5 dilution of goat
serum in 50 mM Tris-Cl (pH 7.4) for 20 min to block non-specific binding
sites. Primary antibody (murine monoclonal antibody specific for PKC-β
(Serotec, Oxford, UK) was applied at a 1:1000 dilution in 50 mM Tris-Cl
(pH 7.4) with 3% goat serum for 1 h. After washing, secondary goat anti-
mouse horseradish-peroxidase–conjugated antibody (Envision Detection
Kit, DAKO) was applied for 30 min. After further washing, immunoperoxi-
dase staining was developed using a DAB chromogen kit (DAKO) according
to manufacturer’s instructions. Following counterstaining with hema-
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toxylin, immunoperoxidase staining within the malignant cell population
of each core was scored in a blinded fashion with respect to clinical out-
come and expression profile results by 3 experienced hematopathologists
(J.C.A., A.P.W. and J.L.K.). The intensity of staining on each core was
graded from 0 (no staining) to 3 (maximal staining), and an average stain-
ing intensity (mean of all 5 cores) was generated for each tumor. Median
values were used to divide both the PKC immunostaining intensities and
the array-based transcript levels into two categories. The Fisher exact test
was then used to evaluate the association between these measurements.
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