

**Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes
including one characterized by host inflammatory response**

Stefano Monti^{1*}, Kerry J. Savage^{2*}, Jeffery L. Kutok³, Friedrich Feuerhake², Paul Kurtin⁴, Martin Mihm⁵, Bingyan Wu⁶, Laura Pasqualucci⁷, Donna Neuberg⁶, Ricardo C.T. Aguiar², Paola Dal Cin³, Christine Ladd¹, Geraldine S. Pinkus³, Gilles Salles⁸, Nancy Lee Harris⁶, Riccardo Dalla-Favera⁷, Thomas M. Habermann⁹, Jon C. Aster³, Todd R. Golub^{1,10**}, Margaret A. Shipp^{2**}

¹The Broad Institute, Cambridge, MA; ²Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; ³Department of Pathology, Brigham and Women's Hospital, Boston, MA; ⁴Department of Pathology, Mayo Clinic, Rochester, MN; ⁵Department of Pathology, Massachusetts General Hospital, Boston, MA; ⁶Department of Biostatistics, Dana-Farber Cancer Institute, Boston, MA; ⁷Institute for Cancer Genetics, Columbia University, New York, NY; ⁸Hematology Department, Centre Hospitalier Lyon-Sud, Lyon, France; ⁹Division of Hematology and Department of Medicine, Mayo Clinic, Rochester, MN; ¹⁰Department of Pediatric Oncology, Dana-Farber Cancer Institute and Howard Hughes Medical Institute, Boston, MA

Running title: DLBCL subtype with brisk host immune response
Scientific heading: Neoplasia
Word count: 4,606
Abstract 199

*These authors contributed equally to the work.

** These authors contributed equally to the work.

Corresponding author: M. Shipp, Dana-Farber Cancer Institute, 44 Binney Street., Boston, MA 02115, 617-632-3874 (phone), 617-632-4734 (fax), margaret_shipp@dfci.harvard.edu

Key words: lymphoma, profiling, gene expression, clusters

Abstract

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with recognized variability in clinical outcome, genetic features, and cells of origin. To date, transcriptional profiling has been used to highlight similarities between DLBCL tumor cells and normal B-cell subtypes and associate genes and pathways with unfavorable outcome. To identify robust and highly reproducible DLBCL subtypes with comprehensive transcriptional signatures, we utilized a large series of newly diagnosed DLBCLs, whole genome arrays and multiple clustering methods. Tumors were also analyzed for known common genetic abnormalities in DLBCL. Three discrete subsets of DLBCLs – “Oxidative Phosphorylation”, “B-cell Receptor/Proliferation” and “Host Response” (HR) were identified, characterized using gene set enrichment analysis and confirmed in an independent series. HR tumors had increased expression of T/NK-cell receptor and activation pathway components, complement cascade members, macrophage/dendritic cell markers and inflammatory mediators. HR DLBCLs also contained significantly higher numbers of morphologically distinct CD2+/CD3+ tumor-infiltrating lymphocytes and interdigitating S100+/GILT+/CD1a-/CD123- dendritic cells. The HR cluster shared features of histologically defined T-cell/histiocytic-richBCL, including fewer genetic abnormalities, younger age at presentation and frequent splenic and bone marrow involvement. These studies identify tumor microenvironment and host inflammatory response as defining features in DLBCL and suggest rational treatment targets in specific DLBCL subsets.

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy in adults, comprising almost 40% of all lymphoid tumors. Although a subset of DLBCL patients can be cured with standard adriamycin-containing combination chemotherapy, the majority die of their disease. Robust clinical prognostic models such as the International Prognostic Index can be used to identify patients who are less likely to be cured with standard therapy ¹. However, such models do not provide specific insights regarding tumor cell biology, novel therapeutic targets or more effective treatment strategies. Furthermore, recent studies suggest that subsets of DLBCL may differ with respect to normal cell of origin and genetic bases for transformation as well as clinical outcome.

DLBCLs are thought to arise from normal antigen-exposed B-cells that have migrated to or through germinal centers (GC) in secondary lymphoid organs ². Like normal GC B-cells and their descendants, DLBCLs have somatic mutations of immunoglobulin receptor variable (v)-region genes ². These tumors also exhibit genetic changes that may be related to normal GC functions. For example, normal GC B-cells undergo vigorous clonal expansion and editing of the immunoglobulin receptor via processes that require DNA strand breaks. In small subsets of DLBCL, several translocations into the immunoglobulin locus have been described, including t(8;14), t(3;14) and t(14;18) ³. A subset of DLBCLs also exhibits aberrant somatic hypermutation of genes that are not targeted by this editing process in normal GC B-cells ⁴. However, a significant percentage of DLBCLs lack known genetic abnormalities.

Given the documented clinical and genetic heterogeneity of DLBCLs, it would be useful to have comprehensive molecular signatures of tumors that share similar features. In addition to highlighting potential pathogenetic mechanisms, such signatures might identify promising subtype-specific targets and pathways for therapeutic intervention. With the advent of gene expression profiling, it is now possible to obtain signatures of DLBCL subtypes.

To date, transcriptional profiling of DLBCLs has been used to highlight similarities between subsets of tumors and normal B-cells and to identify features associated with unfavorable responses to empiric combination chemotherapy. For example, a series of molecular models have been described which relate DLBCL subsets to normal GC B-cells, *in vitro* activated peripheral blood B-cells or an unspecified, third group ^{5,6}. In these studies, DLBCLs with features common to normal GC B-cells responded more favorably to standard empiric combination chemotherapy. In additional profiling studies, the molecular signatures of DLBCLs with different responses to standard chemotherapy were examined ⁷. Two of the pathways associated with poor responses to current regimens have already been credentialed and targeted for possible therapeutic intervention (⁸ and P. Smith, personal communication).

However, DLBCLs are not a homogeneous group of tumors that only differ with respect to outcome or possible cell of origin. Given the genetic heterogeneity in DLBCL, there are likely to be subsets of tumors with different pathogenetic mechanisms and possible treatment targets. With a more extensive series of primary tumors and arrays with increasing genome coverage, it is now possible to identify robust subsets of large cell lymphoma with unique, comprehensive transcriptional profiles. For example, we and others recently found that the molecular signature of primary mediastinal large B-cell lymphoma (MLBCL) differs from that of DLBCL and shares important features with that of a clinically similar disorder, classical Hodgkin lymphoma (nodular sclerosis subtype) ^{9,10}. In the current study, we address the more difficult question of unrecognized biological heterogeneity within DLBCLs, using multiple clustering methods and comprehensive genetic analyses to identify discrete subsets of tumors.

Materials and Methods

Case selection and Histologic classification

Tumor specimens and retrospective clinical data from 176 DLBCL patients were analyzed according to an Institution Review Board-approved protocol. All tumor specimens were nodal biopsies from newly diagnosed, previously untreated patients. The histopathology and immunophenotype of each DLBCL was reviewed by expert hematopathologists to confirm the diagnosis. Clinical variables included in the full International Prognostic Index (IPI) (age, stage, number of extranodal sites, LDH and PS) were obtained; an IPI score was available for 144 patients (Supplementary Information). Overall survival (OS) and freedom from progression (FFP) were determined by the Kaplan-Meier method in 130 study patients who received full-dose CHOP-based (cyclophosphamide, adriamycin, vincristine, prednisone) therapy (eg. 3-4 cycles +XRT for localized disease or minimum of 6 cycles for advanced disease) and had long-term clinical follow-up or disease progression during or following induction therapy.

Target cRNAs of oligonucleotide microarrays

Target cRNAs were prepared as previously described ⁷. For 17 randomly selected tumors, 2 separate aliquots of RNA were used for target preparation and analysis. Samples were hybridized to Affymetrix U133A and U133B oligonucleotide microarrays (Affymetrix, Santa Clara, CA) which include probe sets from ~ 33,000 genes. Arrays were subsequently developed and scanned as previously described (⁷ and Supplementary Information).

Gene expression analysis

A statistical analysis of the duplicate samples was used to identify genes with high reproducibility within duplicates and high variation across patient tumors (Supplementary Information). Genes were ranked using a robust modification of the F statistic and the

top 5% (2118 genes) were included in the final gene set. Similar analyses were performed using the top 10% of ranked genes (Supplementary Information).

Unsupervised analysis by consensus clustering

Three unsupervised clustering algorithms were used in the analysis: hierarchical clustering (HC)¹¹, self-organizing maps (SOM)¹² and model-based probabilistic clustering (PC)¹³ (Supplementary Information). The stability of the identified clusters (i.e., sensitivity of the cluster boundaries to sampling variability) was assessed using consensus clustering¹⁴. With this method, perturbations of the original dataset are simulated by resampling techniques. The clustering algorithm of choice is applied to each of the perturbed datasets and the agreement, or consensus, among multiple runs is assessed and summarized in a consensus matrix (Supplementary Information).

Data-set perturbations were obtained by randomly selecting 80% of the samples (141/176 tumors) at each iteration. Two hundred sub-sampling iterations were performed for each clustering algorithm (HC, SOM and PC). Consensus matrices were built and evaluated for partitions including 2 to 9 clusters (Supplementary Information). Confusion matrices were used to measure the agreement between clusters produced by different algorithms and to determine the number of samples assigned to similar clusters by any 2 algorithms. A meta-consensus was used to identify the tumors that were similarly assigned by all 3 clustering algorithms (Supplementary Information).

Gene expression differential analysis

From the top 5% (2118-gene) pool, genes associated with each of the DLBCL clusters were identified using the binary distinction “cluster X vs. NOT cluster X”. Genes were ranked according to the signal-to-noise ratio (SNR) (Supplementary Information).

Gene Set Enrichment Analyses (GSEA)

GSEA was performed as previously described¹⁵ using a total of 281 gene sets from 4 independent sources: 1) Biocarta, an internet resource (www.biocarta.com) that includes

169 biological pathways involved in adhesion, apoptosis, cell activation, cell cycle regulation, cell signaling, cytokines/chemokines, developmental biology, hematopoiesis, immunology, metabolism, and neuroscience; 2) GenMAPP (Gene MicroArray Pathway Profiler), a set of web-accessible pathways (www.GenMAPP.org) and gene families including 45 gene sets involved in metabolic and cell signaling processes; and 3) 64 manually curated pathways involved in mitochondrial function and metabolism and additional gene sets that are co-regulated in normal murine tissues ¹⁵ (Supplementary Information); and 4) 3 recently described co-regulated gene sets in DLBCL ⁵.

Enrichment was assessed by: 1) ranking the 2118 genes in the top 5% pool with respect to the phenotype “cluster X vs. not cluster X”; 2) locating the represented members of a given gene set within the ranked 2118 genes; 3) measuring the proximity of the gene set to the overexpressed end of the ranked list with a Kolmogorov-Smirnoff (KS) score (with a higher score corresponding to a higher proximity); and 4) comparing the observed KS score to the distribution of 1000 permuted KS scores for all gene sets (Supplementary Information). A $p < .005$, corrected for multiple hypothesis testing (MHT- p), was used to identify highly significant associations between specific gene sets and DLBCL clusters.

Fluorescence in-situ hybridization (FISH)

Air-dried touch preparations were prepared from fresh frozen tumor specimens. Interphase nuclei were hybridized to commercially available probes flanking or spanning the *IGH*, *BCL2* and *BCL6* loci: LSI *IGH/BCL2* Dual Color, Dual Fusion Translocation Probe for detection of t(14;18) and LSI *BCL6* Dual Color, Break Apart Rearrangement Probe for detection of any rearrangement involving 3q24 (t(3;), Vysis, Drowner's Grove, IL). Translocations were detected by fluorescence microscopy after nuclear counterstaining with DAPI.

Morphologic analysis of tumor infiltrating lymphocytes (TILS).

All study DLBCLs with available hematoxylin and eosin (H&E)-stained diagnostic specimens (119 tumors) were independently assessed for the presence of TILS by an expert morphologist (MM) who had no previous information regarding the DLBCL transcriptional profiles. For the majority of tumors, anti-CD2 stained specimens were also available for review. Tumors were initially scanned at high power (640X) to identify morphologically normal, CD2+ lymphocytes with round or oval nuclei and delicately dispersed chromatin; such lymphocytes were only scored when they directly infiltrated the tumor (TILS, ¹⁶). Twenty-30 representative fields of the tumor were independently scored for TILS at 400X and an average TILS/400X score was obtained. DLBCLs were classified as having either less than or greater than 20 TILS/400X field.

Immunohistochemistry (IHC)

Two representative 0.6mm cores were obtained from diagnostic areas of available paraffin- embedded, formalin- or B5-fixed DLBCLs (80 tumors) and inserted into a tissue array. Tissue array sections were analyzed using mouse monoclonals anti-CD2 (LFA-2) (Novocastra Laboratories LTD, Newcastle upon Tyne, UK), anti-CD123 (Bioscience, San Diego, CA) and anti CD1a (Dako, Carpintera, CA), and rabbit polyclonal anti-CD3 and anti-S100 (Dako), and anti-gamma interferon-induced lysosomal transferase (GILT, Gift from Peter Cresswell, Yale University School of Medicine, New Haven, CT ¹⁷) (Supplementary Information) and horseradish peroxidase-conjugated secondary antibodies (anti-mouse or rabbit, Envision detection kit, DAKO). Slides were developed with diaminobenzidine (DAB) (DAKO), counterstained with harris hematoxylin and analyzed in blinded fashion by two expert hematopathologists, without information regarding cluster designations.

The numbers of CD2+ and CD3+ cells/core were separately recorded for duplicate samples and represented in 5 categories: 1) <50 cells/core; 2) 50-150 cells/core; 3) 150-250 cells/core; 4) 250-500 cells/core; 5) >500 cells/core. Separate analyses of GILT- stained dendritic cells and tumor cells were performed. The number of GILT+ dendritic

cells/core was assessed in duplicate samples and represented in 3 categories: 1) 0-25 cells/core; 2) 25-100 cells/core; and 3) >100 cells/core. The number of S100+ dendritic cells/core was assessed in duplicate samples and represented in 4 categories: 1) 0-25 cells; 2) 25-50 cells; 3) 50-100 cells; and 4) > 100 cells.

Cluster validation

An independent group of 221 newly diagnosed DLBCLs with available cDNA microarray ("lymphochip") profiles⁵ was used for cluster validation. This dataset represented the originally described 240 tumors⁵ following removal of 19 subsequently identified primary MLBCLs (A. Rosenwald and L. Staudt, personal communication). Seven hundred and three of the top 5% (2118) genes were also represented on the lymphochip platform. These overlapping lymphochip probes were used in HC, SOM, PC and meta-consensus to identify the dominant structure in the independent DLBCL dataset (Supplementary Information).

The level of agreement between the consensus clusters in our dataset and the independent series was determined by comparing the gene markers for each of the respective clusters. Cluster markers were defined as the set of genes with the highest SNR for the corresponding one-vs-all distinction (Supplementary Information). The overlap between respective pairs was represented in a 2-dimensional contingency table and assessed with a Fisher exact test. Similar analyses were also performed using the entire set of genes represented on the lymphochip (7K+) or the top 50% of genes selected with a MAD filter (Supplementary Information).

Cell-of-origin signature

DLBCLs from our dataset were sorted according to the most recent COO signature⁶ (germinal center B-cell [GCB], activated B-cell [ABC] and other [not otherwise specified]), using *linear predictive scores* and the 23 (of 27) COO probes represented on the oligonucleotide assays (Supplementary Information). Confusion matrices were used to measure the agreement between the LPS-defined COO signatures and our meta-consensus defined comprehensive clusters (Supplementary Information).

Results

Identification of DLBCL consensus clusters

To identify biologically meaningful subsets of DLBCL with similar transcription profiles, we utilized a large series of tumors from highly representative, newly diagnosed patients (Supplementary Information). We were interested in DLBCL subsets that were sufficiently robust to be captured by multiple methods. For this reason, we used three different clustering algorithms (hierarchical clustering (HC), self-organizing maps (SOM), and probabilistic clustering (PC)) and the top 5% of genes with the highest reproducibility across duplicate samples and largest variation across patient tumors. In addition, we utilized a resampling-based method (consensus clustering) that automatically selects the most stable numbers of clusters with each algorithm.

With all 3 clustering algorithms, the most robust substructure included 3 discrete clusters (Fig. 1A, left panel). There was a high level of agreement between clusters produced by the individual algorithms, with more than 84% of DLBCLs assigned to the same clusters by any two algorithms (Fig. 1A, right panel). A meta-consensus confirmed that 141 of the 176 tumors were assigned to the same clusters by all 3 methods (Fig. 1B). We predicted the cluster membership of the remaining 35 tumors using a naïve-Bayes model trained on the 141 DLBCLs with concordant cluster labels (Supplementary Information). Similar results were obtained when the clustering analysis was performed with the top 10%, rather than the top 5% of genes, indicating that the results were not dependent upon the initial gene selection. The top 50 genes associated with each DLBCL group are visually represented in Fig. 1C.

Characterization of the DLBCL consensus clusters

Having defined the expression profiles of 3 discrete DLBCL clusters, the next challenge was to interpret them objectively. We first asked whether previously characterized, co-regulated sets of genes were more abundant in specific clusters using GSEA (Methods¹⁵).

The first DLBCL cluster was significantly enriched in genes involved in oxidative phosphorylation, mitochondrial function and the electron transport chain (Table 1A). More detailed analysis of this DLBCL cluster, termed “OxPhos”, revealed increased expression of members of the NADH dehydrogenase complex and cytochrome c/cytochrome c oxidase (COX) complex as well as ATP synthase components and additional mitochondrial membrane enzymes (Table 2A) [18]. OxPhos tumors also had higher levels of the anti-apoptotic *BCL2* related family member, BFL-1/A1 [19]. Given the known consequences of mitochondrial membrane perturbation – cytochrome release and caspase-mediated apoptosis – and the regulation of mitochondrial membrane potential and cytochrome c release by *BCL2* family members, these results are of particular interest. OxPhos tumors also had increased expression of multiple components of the 26S proteasome and general and mitochondrial ribosomal subunits (Table 2A). [20].

The second DLBCL cluster was enriched in cell-cycle regulatory genes (Table 1A), including CDK2 and MCM (minichromosome maintenance deficient) family members (Table 2B) [21]. These tumors also had increased expression of DNA repair genes including postmeiotic segregation increased 2 (PMS2) family members [22], H2AX [23], PTIP [24] and p53 (Table 2B). This DLBCL cluster also had higher levels of many components of the BCR signaling cascade (CD19, Ig, CD79a, BLK, SYK, PLC γ 2 and MAP4K) and additional B-cell specific or essential transcription factors (including PAX5, OBF-1, E2A, *BCL6*, STAT6 and MYC) (Table 2B) [25,26]. For this reason, this subset of DLBCLs was termed “BCR/Proliferation”.

Unlike the other 2 DLBCL subsets, the third DLBCL cluster had a signature that was largely defined by the associated host response rather than the tumor itself (Table 1). By GSEA, this cluster was enriched for markers of T-cell mediated immune responses and the classical complement pathway (Table 1A). These tumors also had increased expression of an overlapping set of co-regulated inflammatory mediators and connective tissue components (C7, Table 1A and Supplementary Information).

Detailed analysis of the third cluster, termed “Host Response (HR)”, revealed increased expression of multiple components of the T-cell receptor (TCR) (TCR α and β and CD3 subunits), CD2, and additional molecules associated with T/NK-cell activation [27] and the

complement cascade (Table 2C). HR tumors also had more abundant monocyte/macrophage and dendritic cell transcripts, molecules required for efficient antigen processing and certain HLA class I antigens²⁸⁻³⁵ (Table 2C). Consistent with the signature of an ongoing inflammatory/immune response, HR tumors had increased expression of interferon-induced genes, certain tumor necrosis family (TNF) ligands and receptors, cytokine receptors, adhesion molecules and extracellular matrix components³⁶⁻³⁸ (Table 2C).

Of note, patients in the 3 consensus clusters had similar 5-year survivals (OxPhos 53%, BCR/proliferation 60% and HR 54%, $p = .53$), suggesting that the clusters may be more useful for identifying potential pathogenetic mechanisms and cluster-specific rational therapeutic targets than predicting responses to empiric combination chemotherapy.

Genetic abnormalities and clinical features in the newly identified DLBCL clusters

Having identified 3 subclasses of DLBCL, we asked whether these subgroups differed with respect to known chromosomal translocations in the disease (t(14;18) and t(3;), involving the *BCL6* locus) (Table 3). The distribution of t(14;18) and t(3;) was examined in the 116 tumors with available data and no more than one translocation (one OxPhos tumor with both translocations was omitted from the analysis). There was an association between cluster membership and the examined genetic abnormalities ($p = 0.059$, Fisher exact test, Table 3). *BCL2* translocations were more common in the Oxphos cluster whereas *BCL6* translocations were more frequent in the BCR/proliferation cluster. Translocations of either type were uncommon in the HR cluster (Table 3).

The increased incidence of t(14;18) in OxPhos tumors was of particular interest given this cluster's oxidative phosphorylation/mitochondrial gene expression signature and overexpression of additional anti-apoptotic *BCL2* family members (Tables 1 and 2A).

The near absence of known cytogenetic abnormalities and the prominent inflammatory/immune infiltrate in HR DLBCLs prompt speculation regarding other, as yet uncharacterized, mechanisms of transformation in these tumors. In this regard, it is noteworthy that patients with HR DLBCLs were significantly younger than those with OxPhos or BCR/proliferation tumors ($p = 0.04$, Kruskal-Wallis test, Supplementary

Information). Patients with HR tumors also had a significantly higher incidence of splenic and BM involvement ($p = 0.02$ and 0.03 , respectively).

Immunohistochemical and morphological analysis of HR tumors

The unique characteristics of the HR cluster – fewer known genetic abnormalities and prominent host immune and inflammatory cell transcripts – prompted us to assess host immune cells in study tumors using morphologic and immunohistochemical approaches. Hematoxylin-and-eosin and CD2- stained slides of study DLBCLs were evaluated for the presence of tumor infiltrating lymphocytes (TILs) by an expert morphologist who had no information regarding the DLBCL transcriptional profiles. HR tumors contained significantly higher numbers of TILs than DLBCLs in the other clusters (< 0.0001 , Fisher exact test, Supplementary Information).

Since HR tumors had more abundant CD2 and CD3 ϵ transcripts (Table 2C), we also used CD2 and CD3 immunostaining to quantify infiltrating T-cells in study DLBCLs. HR tumors contained significantly higher numbers of CD2+ and CD3+ T-cells than DLBCLs in the other clusters ($p = .005$ and $.003$, respectively, Kruskal-Wallis exact test, Fig. 2A). Consistent with these observations, 8 of the 10 tumors initially diagnosed as T-cell-histiocyte-rich DLBCLs ³⁹ were included in the HR cluster (49 tumors total). Additional components of the HR signature – ZAP70 and its substrate, LAT (linker for the activation of T-cells, ⁴⁰, the TH₂ transcription factors, GATA3 and c-MAF ⁴¹, the TH₁ and TC₁ cytokine receptor, CXCR6 ⁴², the natural killer cell (NK) triggering receptor, LST (NKp30) ⁴³, perforin 1 and the CD28 co-stimulatory molecule ⁴⁴ – suggest that these tumors include a mixed population of activated T/NK-cells (Table 2C).

In addition to having higher numbers of infiltrating T and NK cells, HR tumors had increased levels of likely macrophage and dendritic cell transcripts, including the gamma interferon-induced lysosomal thiol reductase, GILT ^{17,34} (Table 2C). Since GILT is required for effective peptide processing and optimal antigen presentation ^{34,45,46}, we used GILT immunostaining to both identify and characterize the dendritic cells in study tumors. When compared to the other clusters, HR tumors contained increased numbers of GILT+ dendritic cells ($p = .06$, Kruskal-Wallis test, Figs. 2A and B).

For this reason, we further characterized tumor dendritic cells (DC) with S100, CD1a and CD123. These markers distinguish interdigitating DC (S100+ CD1a – CD123-) that interact with antigen-specific T-cells in secondary lymphoid organs from other DC subtypes^{47,48}. There was no detectable CD1a expression in study DLBCLs and only 2 tumors (non-HR) contained CD123 positive cells. In marked contrast, S100+ DC were readily detectable and significantly more abundant in HR tumors than DLBCLs from other clusters ($p = .009$, Krushal Wallis test). In addition, the numbers of CD2+/CD3+ infiltrating T-cells and GILT+/S100+ DC were highly correlated in individual tumors ($p < 0.001$, Jonckheere-Terpstra test) (Fig. 2B and Supplementary Information). Therefore, HR tumors contain interdigitating DC and associated infiltrating T-cells, likely capable of participating in a coordinated immune response. Consistent with this interpretation, the HR signature also includes adhesion molecules like LFA-1 that strengthen T-cell/DC contact and T-cell surface molecules, such as SEMA4D/CD100 and LAG3/CD223, that promote DC maturation and activation (Table 2C)^{44,49-51}.

Validation of DLBCL consensus clusters in an independent dataset

After defining 3 consensus clusters in our own DLBCL series, we asked whether there were similar clusters in an independent group of newly diagnosed DLBCLs with available gene expression profiles⁵. Using the overlapping set of highly reproducible/highly variable genes (703 common genes), our clustering procedure subdivided the independent DLBCL series into 2, rather than 3, major groups (Fig.3, right panel and Supplemental Information). The signature for one of the independent clusters was highly enriched for HR transcripts (overlap P-value $< 2.2 \times 10^{-16}$) (Fig. 3A, top left panel). We further analyzed the “non-HR” tumors by clustering this group in the space of non-HR markers. “Non-HR” tumors separated into 2 discrete clusters with highly significant enrichment for either BCR/proliferation or OxPhos transcripts (overlap P-value < 0.0009) (Fig. 3B, bottom panels).

Similar structure was also identified when tumors were clustered using less restricted sets of genes (either the top 50% of genes ranked by a MAD-based variation filter or all genes), indicating that the structure was not dependent upon a highly selected gene set (Supplementary Information). Taken together, these results confirm the presence of similar consensus clusters in an independent DLBCL dataset.

Relationship of consensus clusters to the cell-of-origin signature

Recent studies suggest that subsets of DLBCL share elements of the transcriptional profile of normal purified germinal center B-cells (GCB) or *in vitro*-activated peripheral blood B-cells (ABC) while other DLBCLs lack these features (Other)^{5,6}. To compare the newly defined consensus clusters (CC) with these cell-of-origin (COO) subsets, we first classified our tumors with respect to COO⁶ (Methods and Supplementary Information). Of note, tumors identified as GCB were associated with significantly longer overall survivals ($p = .003$).

Comparison of the CC and COO assignments indicates that the two classification schema are capturing largely different aspects of DLBCL biology (Fig.4 and Supplementary Information). Although 53% of tumors in the BCR/proliferation cluster and 46% of tumors in the OxPhos cluster were classified as GC-like, the remainder were designated ABC or Other (Fig. 4). In the HR cluster, there were relatively more unspecified (Other) DLBCLs (Fig.4), likely because unspecified (Other) DLBCLs have less striking B-cell signatures and HR tumors have prominent inflammatory infiltrates.

In DLBCLs, additional sets of co-regulated genes (Proliferation, MHC class II and Lymph Node) were previously reported to be expressed independently of the COO signature⁵. For these reasons, we asked whether these additional co-regulated gene sets contributed to consensus cluster signatures using GSEA. Not surprisingly, the BCR/proliferation signature had some evidence of enrichment with the previously described proliferation genes⁵ (MHT $p = 0.06$, Table 1B). There was also highly significant enrichment of the LN gene set in our HR signature ($p = < 0.001$, Table 1B). Given the composition of the LN gene set -- T/NK activation antigens, complement components, monocyte markers, interferon-inducible genes, HLA class I molecules, additional cytokines and connective tissue components⁵ -- these results are in keeping with the broader definition of a DLBCL cluster characterized by a concomitant host immune/inflammatory response.

Discussion

Using 3 different clustering methods and whole genome arrays, we identified three robust subsets of DLBCL and confirmed their presence in an independent series. The characteristics of these clusters – OxPhos, BCR/proliferation and HR – suggest that these tumors may have novel pathogenetic mechanisms and possible treatment targets. In addition, the signatures identify the tumor microenvironment as a defining feature.

The current study indicates that additional, non-overlapping information can be obtained by sorting DLBCLs with respect to consensus clusters and putative COO. In fact, other features of DLBCLs that track independently of COO (“proliferation” and “lymph node signature”⁵) were captured by the comprehensive clusters. The updated COO signature identifies a subset of “GC-like” DLBCLs that responded more favorably to empiric combination chemotherapy. Although the comprehensive consensus clusters were less predictive of response to empiric combination chemotherapy, the clusters reproducibly defined major groups of tumors that may be amenable to targeted intervention. For example, OxPhos tumors have increased expression of proteosomal subunits and molecules regulating mitochondrial membrane potential and apoptosis. These DLBCLs may be particularly sensitive to proteosome blockade²⁰ or *BCL2* family inhibition. In contrast, HR tumors may be more sensitive to immunomodulatory approaches.

Thus far, the HR cluster has been most extensively characterized. HR tumors were largely defined by their inflammatory/immune cell infiltrate, including CD2+/CD3+ TILs and interdigitating S100+/GILT+ CD1a-CD123- dendritic cells and suggesting a coordinated immune response. HR tumors had less frequent genetic abnormalities and occurred in younger patients, prompting speculation regarding an alternative pathogenetic mechanism. Patients with HR tumors also had unique clinical features, presenting more commonly with splenomegaly and bone marrow involvement.

The T-cell/dendritic cell infiltrates in HR tumors resemble those of a smaller provisional (WHO) subtype of DLBCL, T-cell/histiocyte-rich B-cell lymphoma (T/HRBCL), which includes abundant non-neoplastic T-cells and associated macrophages (“histiocytes”)

^{39,52-55}. Like HR DLBCLs, T/HR BCLs are reported to have fewer known genetic lesions and occur in slightly younger patients who often have splenomegaly and bone marrow involvement ^{53,54}. However, histologically defined T/HRBCLs represent a smaller subset of DLBCL than our HR cluster. It is likely that the comprehensive transcriptional profiles identify additional DLBCL patients with more subtle, related signatures.

In addition to providing insights regarding the nature of the associated immune response in HR tumors, the newly identified molecular and immunohistochemical features of these DLBCLs may increase diagnostic accuracy. For example, histologically defined T/HRLCL is a “grey zone” lymphoma that may resemble lymphocyte predominant Hodgkin’s lymphoma, a more indolent disease with different recommended therapy ^{56,57}.

The current HR signature contains more information regarding the infiltrating immune cells and associated inflammatory response than the associated malignant B-cells. Microdissected tumor cells from T/HRBCL were previously shown to have clonal Ig gene rearrangements, somatic hypermutation, and a mutation pattern suggestive of antigen selection ⁵². In the current study, HR tumors expressed higher levels of Notch 2, a molecule implicated in specific stages of mature B-cell development ⁵⁸. HR tumors also expressed higher levels of TNF receptors and additional TNF co-stimulatory molecules (such as APRIL) known to protect malignant B-cells from apoptosis ^{59,60}. At present, the antigen specificity of HR malignant B-cells remains undefined. It is possible that HR malignant B-cells and the associated infiltrating T-cells are directed against the same antigen; if so, the TILs and interdigitating dendritic cells may actually support tumor growth ⁶¹. Alternatively, TILs might be directed against the malignant B-cells in HR tumors. However, patients in the HR cluster did not have better outcomes following empiric chemotherapy, suggesting that their immune responses were ineffective and/or inhibited by counter-regulatory mechanisms ⁶² or their tumors were inherently less responsive to CHOP-based treatment.

For these reasons, it will be important to identify HR tumors with pre-existing abundant T- and dendritic-cell infiltrates and further characterize their associated underlying immune response. Such directed approaches to HR tumors and the other newly

identified DLBCL consensus clusters will likely define more rational treatment targets in this heterogeneous disease.

Figure Legends

Fig. 1 Identification of consensus clusters

A. Left panels). Consensus matrices produced by hierarchical clustering (HC, K=3), self-organizing maps (SOM, K=3) and probabilistic clustering (PC). Right panels). Comparisons of the cluster assignments of the different algorithms (PC vs. HC, HC vs. SOM and PC vs. SOM, respectively). More than 84% of DLBCLs were assigned to the same clusters by any two algorithms.

B. Left panel). Consensus matrix comparing the assignments made by all three clustering algorithms (“Meta Consensus” [PC vs. HC] vs. [PC vs. SOM]). Right panel). Comparisons of the “meta-consensus” cluster assignments. 141 of the 176 tumors were assigned to the same clusters by all three algorithms.

C. Expression profiles of the three DLBCL clusters. The top 50 genes associated with each DLBCL cluster are shown. Each column is a sample, each row a gene. Color scale at bottom indicates relative expression and standard deviations from the mean. Red indicates high-level expression; blue, low-level expression.

Fig. 2 T- and dendritic cell infiltrates in study DLBCLs.

A) Numbers of normal infiltrating CD2+ and CD3+ cells and GILT-positive dendritic cells in primary DLBCLs in each cluster. HR tumors included significantly higher numbers of CD2+ and CD3+ T-cells than DLBCLs in the other clusters ($p = .005$ and $.003$, respectively, Kruskal-Wallis exact test). HR tumors also contained higher numbers of GILT+ dendritic cells ($p = .06$, Kruskal-Wallis exact test). B) Hematoxylin-and-eosin staining and CD3 and GILT immunostaining of a representative HR tumor.

Fig.3 Validation of DLBCL consensus clusters in an independent dataset.

Application of consensus clustering and meta-consensus (as in Fig. 1B) to the independent DLBCL series (top right panel). One of the identified consensus clusters was highly enriched for HR transcripts ($p < 2.2 \times 10^{-16}$, top left panel). Application of consensus clustering and meta-consensus to the “non-HR” cluster (bottom right panel). The “non-HR” tumors sorted into two discrete clusters with

highly significant enrichment for either BCR/proliferation or OxPhos transcripts ($P = < 0.0009$, bottom left panel).

Fig. 4 Relationship of consensus clusters to cell-of-origin (COO) signature.

Comparison of study DLBCLs sorted into consensus clusters with the same tumors classified by COO. The lack of a clear correlation between the two clustering systems is reflected by the absence of a matrix diagonal structure (ie. large numbers along the diagonal and numbers close to 0 in the off -- diagonal entries).

Table 1. Gene Set Enrichment Analysis of the DLBCL Consensus Clusters^a

A.	Ox Phos		BCR/Proliferation		Host Response	
	KS	MHT p	KS	MHT p	KS	MHT p
Mitochondrial pathways						
PGC	130.9	0.004	13.2	0.763	3.8	0.931
VOXPHOS	156.1	0.001	13.3	0.760	2.9	0.948
Human mito DB	152.6	0.002	11.8	0.790	0.6	0.987
Mitochondrial OXPHOS	157.5	0.001	16.2	0.703	0.4	0.991
	141.0	0.003	13.7	0.753	2.9	0.946
Gen MAPP						
Electron transport	148.1	0.000	14.4	0.641	3.1	0.839
Cell cycle	33.4	0.298	104.8	0.004	0.8	0.873
Complement activation - classical	11.9	0.685	7.4	0.766	105.9	0.004
Bio Carta						
Complement	12.0	0.745	6.4	0.846	91.7	0.004
T cytotoxic	8.5	0.809	7.0	0.835	113.5	0.000
T helper	8.5	0.809	7.0	0.835	113.5	0.000
T ob1	27.0	0.440	2.8	0.902	103.2	0.002
Co-regulated gene sets						
C7	26.2	0.494	7.4	0.870	164.6	0.001
C10	130.5	0.004	1.4	0.98	19.7	0.62
B.						
Additional DLBCL gene sets						
Proliferation	120.4	0.103	142.0	0.064	3.1	0.854
Lymph node	24.3	0.577	1.7	0.902	279.7	0.000

^aGSEA was performed using gene sets from: 1) Biocarta; 2) GenMapp; and 3) a series of manually curated pathways involved in mitochondrial function and metabolism (Mitochondrial pathways)¹⁵. Additional co-regulated gene sets from normal murine tissues (Co-regulated gene sets)¹⁵ and DLBCLs (DLBCL gene sets)⁵ were also used. (B). KS is Kolmogorov-Smirnoff score and MHT p connotes a p value corrected for multiple hypothesis testing.

Table 2. DLBCL Consensus Cluster Signatures^a

A. OxPhos Cluster

Function	Gene
NADH dehydrogenase complex	NADH dehydrogenase (ubiquinone) 1: α/β subcomplex 1, 8 kDa; β subcomplex 1, 7 kDa; β subcomplex 2, 8 kDa Ubiquinol-cytochrome c reductase hinge protein
Cytochrome c/ cytochrome oxidase (COX) complex	Cytochrome c COX 5b, 6a1, 7a2L, 7b, 7c, 11
ATP synthase, mitochondrial	F0 complex, subunit c F1 complex β polypeptide 1 and O subunit
ATP other	ATP binding protein ATP binding cassette subfamily D (ALD, member 3) ATPase H ⁺ transporting, lysosomal: 21 kDa, VO subunit c and 9 kDa
Other, Mitochondrial	Translocases of inner mito. memb. (TIMM): #8B and 23 Translocases of outer mito. memb. (TOMM) 7 and 20 Diazepam binding inhibitor
Apoptosis	BFL-1/A1 MIHC (BIRC3) TNFA1P8 (SCC-S2) TNFRSF6 (FAS) Apoptosis related protein (APR-3)
Proteosome	Proteosome subunits: α types 2, 5, 6 and 7; and β type 4 Proteosome 26s subunits: ATPase 2 and non-ATPase 4
Ribosome, mitochondrial	L3, L15, L39, S17, S31 and S36
Ribosome, other	L3, L4, L5, L10, L13a, L15, L17, L27, L30, L31, L36A, L36, large PO, S12, S17, S20 and S21
Other	X-ray repair complementing defective repair 5 (XRCC5) Superoxide dismutase 1 (SOD1) Jumping translocation breakpoint CDW52 (CAMPATH) H2AZ PTEN

B. BCR/Proliferation Cluster

BCR signaling cascade	CD22 CD19 Ig μ CD79a BLK SYK PLC γ 2 Inositol 1, 4, 5 triphosphate receptor type 3 Inositol 1, 4, 5 triphosphate 3 kinase B Inositol polyphosphate-5-phosphatase 145 kDa MAP4K1
Class II molecules	CD74 (invariant polypeptide MHC class II)
Transcription factors	PAX5

	FOXO1A BCL6 POU2AF1 (BOB-1/OBF-1/OCAB) STAT6 TCF3 (E2A) NFAT SPI-B ETS-1 (E26 homolog) Ikaros MYC
Other B-cell markers	CD37 BC11A
Proliferation	KI67 CDK2 Signal-induced proliferation-associated 1 like 3
Replication/repair	DEAD/H box polypeptides 11 and 39 Postmeiotic segregation increased (PMS) 2-like 2, 6 and 9 Minichromosome maintenance deficient (MCM) 2, 4, 5 and 7 p53 H2AX PAX transactivation domain-interacting protein (PTIP) MUTL homolog 6
Motility/cytoskeletal	Villin 2 (Ezrin)
Transcription modulators	SMARC A4, B1 and F1
Post-transcriptional Modification	HDAC1 MYST histone acetyltransferase 4 Ubiquitin-activating enzyme E1
Other	Heat shock protein 90 beta

C.Host Response Cluster

T/NK cell	T-cell receptor α and β CD2 CD3 δ , ϵ and γ CD6 CD28 GATA3 cMAF CXCR6 LST (NKp30) Zap 70 Linker for activation of T-cells (LAT) FYN FYN binding protein (SLAP) Lymphocyte activation gene 3 (LAG) ^b CD100 (Sema 4D) Perforin NK transcript 4 ^b T-cell immune regulator (TIRC7) Leukocyte-associated Ig-like receptor 1 (LAIR-1)
Complement	Complement 1qB, 1S and 4A Complement 3 α receptor Clade G (C1 inhibitor)
Monocyte/macrophage	CD14 ^b CD163 B lymphocyte activator, macrophage expressed (BLAME) FGR SHPS-1 (BIT/SIRP α) Granulin

	Allograft inflammatory factor
Antigen processing	Lysosomal-associated membrane protein 1 (LAMP1) ^b Cathepsins B and D IFN γ inducible protein 30 (GILT) ^b
Interferon (IFN)	IFN-induced transmembrane proteins 1 and 2 Guanylate binding proteins 1** and 2, IFN -inducible STAT1 ^b Interferon Regulatory Factors (IRFs) 1 and 7
MHC Class I	HLA A, C, E and F
TNF family members	TNFRSF 1A and B TNFSF10 (TRAIL) TNFSF13 (APRIL) ^b
Cytokine receptors	IL 2 receptor γ IL 6 receptor IL 15 receptor α ^b TGF β receptor II CSF-1 receptor ^b
ECM/Adhesion	LFA-1 (Integrins α L and β 2) ^b PECAM1 (CD31) P-selectin glycoprotein ligand (PSGL-1) Collagens: type XVIII α 1 and type IV α 2 Stromal-derived factor 1
Apoptosis	Caspase 4, apoptosis-related cysteine protease ^b
Other	Notch 2 Disabled homolog 2 (DAB2) FOXO3A MAF B Prostaglandin E receptor 4 S100A4

^aGene lists derived from the top 250 genes with higher levels of expression in the indicated concensus cluster.

^bGenes included in previously described LN signature ⁵

Table 3. Genetic Abnormalities in the DLBCL Consensus Clusters

A.

Genetic abnormality ^a	OxPhos		BCR/Prolif		HR		Total	
	n=37	%	n=50	%	n=29	%	n=116	%
t(14;18)	8	(22)	5	(10)	1	(3)	14	(12)
t(3;...)	2	(5)	8	(16)	1	(3)	11	(9)
None	27	(73)	37	(74)	27	(93)	91	(78)

^a116 tumors had available data and no more than one translocation. One OxPhos tumor with both translocations was omitted from the analysis. The distribution of genetic abnormalities across clusters was represented in a 3X3 contingency table and analyzed with a Fisher exact test (p = 0.059).

References

1. Shipp M, Harrington D, Chairpersons, Anderson J, Armitage J, Bonadonna G, Brittinger G, Cabanillas F, Canellos G, Coiffier B, Connors J, Cowan R, Crowther D, Engelhard M, Fisher R, Gisselbrecht C, Horning S, Lepage E, Lister A, Neerwaldt J, Montserrat E, Nissen N, Oken M, Peterson B, Tondini C, Velasquez W, Yeap B. A predictive model for aggressive non-Hodgkin's lymphoma: The International NHL Prognostic Factors Project. *N Engl J Med.* 1993;329:987-994
2. Kuppers R, Klein U, Hansmann M-L, Rajewsky K. Cellular origin of human B-cell lymphomas. *N Engl J Med.* 1999;341:1520-1529
3. Kramer M, Hermans J, Wijburg E, Philippo K, Geelen E, van Krieken J, de Jong D, Maartense E, Schuuring E, Kluin P. Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. *Blood.* 1998;92:3152-3162
4. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RSK, Kuppers R, Dalla-Favera R. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. *Nature.* 2001;412:341-346
5. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, R.I. F, Gascoyne RD, Muller-Hermelink HK, Smeland EB, Staudt LM. The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma. *N Engl J Med.* 2002;346:1937-1947
6. Wright G, Tan B, Rosenwald A, Hurt E, Wiestner A, Staudt L. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. *PNAS.* 2003;100:9991-9996
7. Shipp MA, Ross KN, Tamayo P, Weng AP, Kurok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. *Nat Med.* 2002;8:68-74.
8. Su T, Guo B, Kawakami Y, Sommer K, Chae K, Humphries L, Kato R, Kang S, Patrone L, Wall R, Teitel M, Leitges M, Kawakami T, Rawlings D. PKC-beta controls IkappaB kinase lipid raft recruitment and activation in response to BCR signaling. *Nature Immunol.* 2002;3:780-786

9. Savage K, Monti S, Kutok J, Cattoretti G, Neuberg D, de Leval L, Kurtin P, Dal Cin P, Ladd C, Feuerhake F, RCT A, Li S, Salles G, Berger F, Jing W, Pinkus G, Habermann TM, Dalla-Favera R, Harris N, Aster JC, Golub TR, Shipp MA. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. *Blood*. 2003;102:3871-3879
10. Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD, Chan WC, Zhao T, Haioun C, Greiner T, Weisenburger D, Lynch J, Vose JM, Armitage JO, Smeland E, Kvaloy S, Holte H, Delabie J, Campo E, Montserrat E, Lopez-Guillermo A, Ott G, Muller-Hermelink H, Connors J, Braziel R, Grogan T, Fisher R, Miller T, LeBlanc M, Chiorazzi M, Zhao H, Yang L, Powell J, Wilson W, Jaffe E, Simon R, Klausner R, Staudt L. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. *J Exp Med*. 2003;198:851-862
11. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. *Proc Natl Acad Sci U S A*. 1998;95:14863-14868
12. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander E, Golub T. Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. *Proc Natl Acad Sci USA*. 1999;96:2907-2912
13. Cheesman P, Stutz J. Bayesian classification (AutoClass): theory and results. In: Fayyad U, Piatetsky-Shapiro G, Smyth P, Uthurusamy R, eds. *Advances in knowledge discovery and data mining*. Menlo Park, CA: AAAI Press; 1995
14. Monti S, Tamayo P, Mesirov J, Golub T. Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. *Machine Learning*. 2003;52:91-118
15. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Maurila E, Houstis N, Daly JJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. *Nat Genet*. 2003;34:267-273

16. Mihm MJ, Clemente C, Cascinelli N. Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response. *Lab Invest.* 1996;74:43-47
17. Arunachalam B, Phan U, Geuze H, Cresswell P. Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT). *PNAS.* 2000;97:745-750
18. Newmeyer D, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. *Cell.* 2003;112:481-490
19. Werner A, de Vries E, Tait S, Bontjer I, Borst J. BCL-2 family member BFL-1/A1 sequesters truncated bid to inhibit its collaboration with pro-apoptotic BAK or BAX. *J Biol Chem.* 2002;277:22781-22788
20. Almond J, Cohen G. The proteasome: a novel target for cancer chemotherapy. *Leukemia.* 2002;16:433-443
21. Labib K, Tercero J, Diffley J. Uninterrupted MCM2-7 function required for DNA replication fork progression. *Science.* 2000;288:1643-1647
22. Kolodner R, Marsischky G. Eukaryotic DNA mismatch repair. *Current Opinion in Genetics & Development.* 1999;9:89-96
23. Bassing C, Suh H, Ferguson D, Chua K, Manis J, Eckersdorff M, Gleason M, Bronson R, Lee C, Alt F. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. *Cell.* 2003;114:359-370
24. Manke I, Lowery D, Nguyen A, Yaffe M. BRCT repeats as phosphopeptide-binding modules involved in protein targeting. *Science.* 2003;302:636-639
25. Niilo H, Clark E. Regulation of B-cell fate by antigen-receptor signals. *Nature Rev.* 2002;2:945-956
26. Bartholdy B, Matthias P. Transcriptional control of B cell development and function. *Genes.* 2003;327:1-23
27. Santana M, Rosenstein Y. What it takes to become an effector T cell: the process, the cells involved, and the mechanisms. *J Cell Physiol.* 2003;195:392-401
28. Gregory C, Devitt A. CD14 and apoptosis. *Apoptosis.* 1999;4:11-20
29. Graversen J, Madsen M, Moestrup S. CD163: a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. *IJBCB.* 2002;34:309-314
30. He Z, Ong C, Halper J, Bateman A. Programulin is a mediator of the wound response. *Nature Medicine.* 2003;9:225-229

31. Kingsbury G, Feeney L, Nong Y, Calandra S, Murphy C, Corcoran J, Wang Y, Prabhu Das M, Busfield S, Fraser C, Villeval J. Cloning, expression, and function of BLAME, a novel member of the CD2 family. *J Immunol.* 2001;166:5675-5680
32. Utans U, Arceci R, Yamashita Y, Russell M. Cloning and characterization of allograft inflammatory factor-1: a novel macrophage factor identified in rat cardiac allografts with chronic rejection. *J Clin Invest.* 1995;95:2954-2962
33. Timms J, Carlberg K, Gu H, Chen H, Kamatkar S, Nadler M, Rohrschneider L, Neel B. Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. *Molecular & Cellular Biology.* 1998;18:3838-3850
34. Maric M, Arunachalam B, Phan U, Dong C, Garrett W, Cannon K, Alfonso C, Karlsson L, Flavell R, Cresswell P. Defective antigen processing in GILT-free mice. *Science.* 2001;294:1361-1363
35. Honey K, Rudensky A. Lysosomal cysteine proteases regulate antigen presentation. *Nature Rev.* 2003;3:472-482
36. Aggarwal B. Signalling pathways of the TNF superfamily: a double-edged sword. *Nat Rev Immunol.* 2003;9:745-756
37. Chawla-Sarkar M, Lindner D, Liu Y, Williams B, Sen G, Silverman R, Borden E. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. *Apoptosis.* 2003;3:237-249
38. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. *Annu Rev Immunol.* 2001;19
39. Jaffe ES, Harris NL, Stein H, Vardiman JW. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press, Lyon. 2001
40. Zhang W, Sloan-Lancaster J, Kitchen J, Trible R, Samelson L. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. *Cell.* 1998;92:83-92
41. Murphy K, Reiner S. The lineage decisions of helper T cells. *Nature Rev.* 2002;2:933-944
42. Kim CH, Kunkel EJ, Boisvert J, Johnston B, Campbell JJ, Genovese MC, Greenberg HB, Butcher EC. Bonzo/CXCR6 expression defines type1-polarized T-cell subsets with extralymphoid tissue homing potential. *J Clin Invest.* 2001;107:595-601

43. Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, Marcenaro E, Accame L, Malaspina A, Biassoni R, Bottino C, Moretta L, Moretta A. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. *J Exp Med.* 1999;190:1505-1516

44. Bachmann MF, McKall-Faienza K, Schmits R, Bouchard D, Beach J, Speiser DE, Mak TW, Ohashi PS. Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. *Immunity.* 1997;7:549-557

45. Watts C. Antigen presentation--losing its shine in the absence of GILT. *Science.* 2001;294:1294-1295

46. Haque M, Li P, Jackson S, Zarour H, Hawes J, Phan U, Maric M, Cresswell P, Blum J. Absence of γ -interferon-inducible lysosomal thiol reductase in melanomas disrupts T cell recognition of select immunodominant epitopes. *J Exp Med.* 2002;195:1267-1277

47. Stent G, Reece J, Baylis D, Ivinson K, Paukovics G, Thomson M, Cameron P. Heterogeneity of freshly isolated human tonsil dendritic cells demonstrated by intracellular markers, phagocytosis, and membrane dye transfer. *Cytometry.* 2002;48:167-176

48. Shortman K, Liu Y-J. Mouse and human dendritic cell subtypes. *Nature Rev.* 2002;21:151-161

49. Kikutani H, Kumanogoh A. Semaphorins in interactions between T cells and antigen-presenting cells. *Nature Rev.* 2003;3:159-167

50. Andreea S, Piras F, Burdin N, Triebel F. Maturation and activation of dendritic cells induced by lymphocyte activation gene-3 (CD223). *J Immunol.* 2002;3874-3880

51. Andreea S, Buisson S, Triebel F. MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223). *Blood.* 2003;102:2130-2137

52. Brauninger A, Kuppers R, Spieker T, Siebert R, Strickler JG, Schlegelberger B, Rajewsky K, Hansmann M-L. Molecular analysis of single B cells from T-cell-rich B-cell lymphoma shows the derivation of the tumor cells from mutating germinal center B cells and exemplifies means by which immunoglobulin genes are modified in germinal center B cells. *Blood.* 1999;93:2679-2687

53. Lim M, Beaty M, Sorbara L, Cheng R, Pittaluga S, Raffeld M, Jaffe E. T-cell/histiocyte-rich large B-cell lymphoma: a heterogeneous entity with derivation from germinal center B cells. *Amer J Surg Pathol.* 2002;26:1458-1466

54. Aki H, Tuzuner N, Ongoren S, Baslar Z, Soysal T, Ferhanoglu B, Sahinler I, Aydin Y, Ulku B, Aktuglu G. T-cell-rich B-cell lymphoma: a clinicopathologic study of 21 cases and comparison with 43 cases of diffuse large B-cell lymphoma. *Leukemia Res.* 2004;28:229-236

55. Bouabdallah R, Mounier N, Guettier C, Molina T, Ribrag V, Thieblemont C, Sonet A, Delmer A, Belhadj K, Gaulard P, Gisselbrecht C, Xerri L. T-cell/histiocyte-rich large B-cell lymphomas and classical diffuse large B-cell lymphomas have similar outcome after chemotherapy: a matched-control analysis. *J Clin Oncol.* 2003;21:1271-1277

56. Rudiger T, Gascoyne RD, Jaffe ES, De Jong D, Delabie J, De Wolf-Peeters C, Poppema S, Xerri L, Gisselbrecht C, Wiedenmann S, Muller-Hermelink HK. Workshop on the relationship between nodular lymphocyte predominant Hodgkin's lymphoma and T cell.histiocyte-rich B cell lymphoma. *Ann Oncol.* 2002;13:44-51-

57. Boudova L, Torlakovic E, Delabie J, Reimer P, Pfistner B, Wiedenmann S, Diehl V, Muller-Hermelink H-K, Rudiger T. Nodular lymphocyte-predominant Hodgkin lymphoma and nodules resembling T-cell/histiocyte-rich B-cell lymphoma: differential diagnosis between nodular lymphocyte-predominant Hodgkin lymphoma and T-cell/histiocyte-rich B-cell lymphoma. *Blood.* 2003;102:3753-3758

58. Saito T, Chiba S, Ichikawa M, Kunisato A, Asai T, Shimizu K, Yamaguchi T, Yamamoto G, Seo S, Kumano K, Nakagami-Yamaguchi E, Hamada Y, Aizawa S, Hirai H. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. *Immunity.* 2003;18:675-685

59. Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? *Nature Rev.* 2003;3:609-620

60. He B, Chadburn A, Jou E, Schattner EJ, Knowles DM, Cerutti A. Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL. *J Immunol.* 2004;172:3268-3279

61. Mills D, Cambier J. B lymphocyte activation during cognate interactions with CD4+ T lymphocytes: molecular dynamics and immunologic consequences. *Semin Immunol.* 2003;6:325-329

62. Lukacher AE. IFN-gamma suspends the killing license of anti-tumor CTLs. *J Clin Invest.* 2002;110:1407-1409