Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response

Stefano Monti
Broad Institute of MIT & Harvard
smonti@broad.mit.edu
http://www.broad.mit.edu/cancer
Diffuse Large B-cell Lymphoma (DLBCL)

- Most common lymphoid malignancy (~40%)
- Significant clinical & genetic heterogeneity
- Hypothesis:
 - gene expression profiling will reveal disease heterogeneity
DLBCL expression profiling

- 176 DLBCL samples.
- Nodal biopsies from untreated patients.
- Affymetrix U133A/B chips (~42K probes)
- **Goal**: unsupervised analysis to discover novel substructure
Analysis of DLBCL Substructure by unsupervised analysis

- Consensus clustering
 - Identifies robust clusters
 - Resampling-based method
 - Automatically selects the number of clusters

- Used with 3 different clustering algorithms
 - Hierarchical clustering (HC)
 - Self-organizing Map (SOM)
 - Probabilistic Clustering (PC)
Consensus Clustering of DLBCL

HC vs. SOM overlap

SOM vs. PC overlap

Meta Consensus

HC vs. SOM vs. PC
Overlap
141/176 patients
DLBCL Consensus Clusters

OxPhos BCR/Proliferation Host Response
Validation of Consensus Clusters on Independent Database

- 221 DLBCL samples on Lymphochip [Rosenwald, et al., NEJM 2003]
- Cross-platform mapping

Diagram:
- Affymetrix
 - probe_1
 - probe_2
 - ...
 - probe_i
 - ...
 - probe_703
- Lymphochip
 - probe_1
 - probe_2
 - ...
 - probe_i
 - ...
 - probe_1784
- Unigene-based mapping
Validation of Consensus Clusters on Independent Database

Validation Cluster markers

Original Cluster Markers

Markers Overlap

Low

High

Cluster\textsubscript{1}

Cluster\textsubscript{2}

HR

BCR/Prolif.

OxPhos

P < 2.22e-16

S. Monti - ASH '04
Validation of Consensus Clusters on Independent Database

Validation Cluster markers

Cluster markers

Cluster markers

Markers Overlap

Low

High

P < 2.22e-16

P < 0.009
Consensus Clusters and Cell Of Origin
Consensus Clusters and Cell Of Origin

Samples by Cell Of Origin

Samples by Consensus Clusters

COO assignment based on methodology described in [Wright, et al., PNAS 2003].
DLBCL Consensus Clusters

OxPhos	BCR / Proliferation	Host response

| NADH dehydrogenase 1 α/β subcomplex 1 |
| Cytochrome c oxidase (COX) 7A2L |
| ATP binding protein |
| Proteosome α 5 |
| ATP synthase, mitoch. FO complex, subunit c iso 3 |
| ATP synthase, mitoch. F1 complex, γ polypeptide 1 |
| Proteosome α 2 |
| Proteosome α 6 |
| Mitochondrial ribosomal protein L3 |
| Translocase of inner mitochondrial membrane 8B |
| NADH dehydrogenase 1 β subcomplex 1 |

Stromal cell-derived factor 1
TNF-related death ligand 1β (APRIL)
IFN-induced transmembrane protein 2
TNFRSF1β
LAMP1
GATA3
cMAF
CD3ε
Linker for activation of T-cells
CD2
T-cell immune regulator 1
TNFRSF1α
Integrin β2
IFN regulatory factor 1
CD79A
Phospholipase C γ 2
MAP4K1
CD22
CD37
Postmeiotic segreg. increased-2-like 9, 8, 2, 11, 3
Proliferation-associated protein 100
Ki67
Inositol polyphosphate-5-phosphatase
CHL1-related helicase
Genes involved in oxidative phosphorylation \((p \leq 0.002)\) and mitochondrial function \((p \leq 0.003)\)

- BFL-1/A1 (anti-apoptotic BCL-2 family member)
- Members of NADH dehydrogenase complex
- Members of the COX complex
- ATP synthase components
BCR/Proliferation cluster

- **BCR signaling components**
 - CD19, IG, CD79a, BLK, SYK, PLCgamma2, MAP4K

- **B-cell transcription factors**
 - PAX5, OBF-1, E2A, BCL6, STAT6, MYC

- **Cell cycle regulatory genes**
 - CDK2, MCM

- **DNA repair genes**
 - PMS2, H2AX, PTIP, p53
Host Response (HR) cluster

signature largely defined by the associated host response rather than the tumor itself

- Components of TCR (TCRα/β, CD3), CD2, T/NK cell activation, and complement cascade.
- Co-regulated inflammatory mediators
- More abundant monocyte/macrophage & dendritic cell transcripts
- Interferon-induced genes, TNF ligands/receptors, cytokine receptors.
Tumor Infiltrating Lymphocytes (TILs)

* (morphology)

<table>
<thead>
<tr>
<th>Consensus clusters</th>
<th>> 20 TILs/HPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>65%</td>
</tr>
<tr>
<td>BCR/proliferation</td>
<td>14%</td>
</tr>
<tr>
<td>OxPhos</td>
<td>11%</td>
</tr>
</tbody>
</table>

$p < .0001$

* Morphologically normal (CD2+) lymphocytes with round/oval nuclei and delicately dispersed chromatin.
TILs and Dendritic Cells in HR tumors (immunostaining)

- Increased # of CD2+/CD3+ T-cells (p≤.005)

- Increased # of GILT+ dendritic cells (DC) (p=.06)
 - Interdigitating DCs (S100+, CD1a− CDC123−), (p<.009)
 - correlated with TILs (p<.0001)
HR tumors and T-cell/histiocyte-rich LBCLs

- HR tumors appear
 - in younger patients (p=0.04);
 - with higher incidence of splenic (p=0.02) and BM involvement (p=0.03).

- 8/10 patients with T-cell/Histiocyte-rich LBCLs fall in the HR cluster
Genetic abnormalities
in DLBCL consensus clusters

Nearly absent in the HR cluster

<table>
<thead>
<tr>
<th>Genetic abnormality</th>
<th>OxPhos (n=27)</th>
<th>BCR/ Prolif. (n=50)</th>
<th>HR (n=29)</th>
<th>Total (n=116)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(14;18)</td>
<td>8 (22%)</td>
<td>5 (10%)</td>
<td>1 (3%)</td>
<td>14 (12%)</td>
</tr>
<tr>
<td>t(3; ...)</td>
<td>2 (5%)</td>
<td>8 (16%)</td>
<td>1 (3%)</td>
<td>11 (9%)</td>
</tr>
<tr>
<td>None</td>
<td>27 (73%)</td>
<td>37 (74%)</td>
<td>27 (93%)</td>
<td>91 (78%)</td>
</tr>
</tbody>
</table>

p = .059

* Columns may not add to 100% because of rounding.
Summary

- Identified three robust clusters by transcriptional profiling and confirmed in independent series.

- HR cluster characterized by:
 - inflammatory/immune cell infiltrate
 - fewer known genetic lesions
 - distinct clinical features

- Different mechanisms of transformation?
Participants

Christine Ladd
David Peck
Todd Golub
Kim Last
Andrew Lister
Paul Kurtin
Tom Habermann
Francoise Berger
Gilles Salles
Nancy Lee Harris
Laurence de Leval
Giorgio Cattoretti
Riccardo Dalla Favera
Andrew Weng
Jeffery Kutok
Paola Dal Cin
Geraldine Pinkus
Jon Aster
Kerry Savage
Friedrich Feuerhake
Ricardo Aguiar
Peter Smith
Erxi Wu
Donna Neuberg
Margaret Shipp
Consensus Clustering

Generate “perturbed” datasets

Apply clustering algorithm to each D_i

Consensus matrix: counts proportion of times two samples are clustered together.

- **RED** (1) two samples always cluster together
- **WHITE** (0) two samples never cluster together

Consensus matrix:

$$
\begin{array}{cccc}
S_1 & S_2 & \ldots & S_n \\
S_1 & & & \\
S_2 & & & \\
\vdots & & & \\
S_n & & & \\
\end{array}
$$

compute consensus matrix
dendogram based on matrix
Consensus Clustering

Consensus matrix: counts proportion of times two samples are clustered together.
- **RED** (1) two samples *always* cluster together
- **WHITE** (0) two samples *never* cluster together

Consensus Clustering

1. **Compute consensus matrix**
2. **Dendrogram based on matrix**
3. **Consensus matrix** ordered according to dendrogram

Clustering algorithm applied to each D_i...
Gene Set Enrichment Analysis

Pathway Co-regulated genes

HR vs. not HR
BCR vs. not BCR

Phenotype

Geneset

Gene List Order Index

Repeat N times with permuted class template

Enrichment Score S

Max. Enrichment Score ES

G

ES

S. Monti - ASH '04
Clusters’ annotation by GSEA

Use an entire database of Gene Sets

Ordered Gene Marker List

Cluster labels

Gene Set A

Gene Set B

“Pathway” A

“Pathway” B