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Appendix 1:  (below) Detailed description of the methods used in the microarray
analyses.

Appendix 2:  Excel file containing the complete expression data from the tet-EF cell
time course experiment.  The data is the output from the Affymetrix GeneChip software,
after scaling and thresholding, as described in appendix 1.

Appendix 3:  File containing reference pattern for tet-EF cell Knn analysis described in
figure 2.  File is in .cls format, for use with the GeneCluster program.

Appendix 4a-d:  Files containing reference patterns for small-round cell tumor analysis
described in Figure 2.  Files are in .cls format, for use with the GeneCluster program.
Ewing’s sarcoma (4a), Burkitt’s lymphoma (4b), neuroblastoma (4c), and
rhabdomyosarcoma (4d) patterns are included.

Appendix 5:  Excel file containing the tet-EF dataset (from appendix 2) limited to those
probes that are also represented on the cDNA microarray of Khan et al., 2001

Appendix 6:  Excel file containing the small-round cell data (of Khan et al. 2001) limited
to those cDNAs that are also represented on the Affymetrix U95Av2 microarray.

Appendix 7a-d:  Excel files containing list of small-round cell tumor-specific genes as
determined by Knn analysis and permutation testing (at the 1% significance level), as
described in appendix 1.  The data is the output from the GeneCluster 2.0 program, and
as such includes the values from the permuation analysis.  Each file also contains the
list of the equivalent Affymetrix probe names, and additionally contains the list of
overlap genes between each small-round cell tumor and the tet-EF cell data, as
described in appendix 1.  Ewing’s sarcoma (7a), Burkitt’s lymphoma (7b),
neuroblastoma (7c), rhabdomyosarcoma (7d).

Appendix 8:  Excel file containing the list of 117 upregulated genes in tet-EF cells
following induction of EWS/FLI expression.

Appendix 9:  Excel files of the SOM clusters from tet-EF cells. 
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Appendix 1:  Transcriptional profiling methodologies.

Tet-EF time course sample preparation:
Tet-EF cells were plated at 1x106 cells per 15 cm plate, five plates in total, in
tetracycline-containing media.  On day zero, one plate of cells was collected,
pelleted, and stored frozen in Trizol reagent (Life Technologies).  The remaining
plates were induced to express EWS/FLI by washing in phosphate-buffered
saline and refeeding with tetracycline-free media.  On each subsequent day one
plate was collected, pelleted, and stored in Trizol reagent (Life Technologies; run
1).  The entire induction experiment was repeated on a subsequent week to
generate an independent duplicate sample (run 2).  Following collection of the
final sample, total RNA was isolated using the manufacturer’s instructions.  RNA
quality was assessed by denaturing gel electrophoresis.  In all instances, the
ribosomal RNA bands were intact.

Microarray hybridization:
The amount of starting total RNA for each reaction was approximately 10 µg.
First strand cDNA synthesis was generated using a T7-linked oligo-dT primer,
followed by second strand synthesis.  An in vitro transcription reaction was
performed to generate cRNA containing biotinylated UTP and CTP, which was
subsequently chemically fragmented at 95°C for 35 minutes.   Ten micrograms of
the fragmented, biotinylated cRNA was hybridized in MES buffer (2-[N-
Morpholino]ethansulfonic acid) containing 0.5 mg/ml acetylated bovine serum
albumin (Sigma, St. Louis) to Affymetrix (Santa Clara, CA) U95Av2 arrays at
45°C for 16 hours.   U95Av2 arrays contain approximately 12,600 known genes
and expressed sequence tags.  Arrays were washed and stained with
streptavidin-phycoerythrin (SAPE, Molecular Probes).  Signal amplification was
performed using a biotinylated anti-streptavidin antibody (Vector Laboratories,
Burlingame, CA) at 3 µg/ml.  This was followed by a second staining with SAPE.
Normal goat IgG (2 mg/ml) was used as a blocking agent.  Scans were
performed on Affymetrix scanners and the expression value for each gene was
calculated using Affymetrix GeneChip software.  Minor differences in microarray
intensity were corrected using a linear scaling method as detailed in the next
section. 

Preprocessing and re-scaling:

The raw expression data as obtained from Affymetrix's GeneChip was re-scaled
to account for different chip intensities. Each column (sample) in the dataset was
multiplied by 1/slope of a least squares linear fit of the sample vs. the reference
sample. This linear fit is done using only genes that have 'Present' calls in both
the sample being re-scaled and the reference. The sample chosen as reference
is a typical one (i.e. one with the number of "P" calls closer to the average over
all samples in the dataset).  Scans were rejected if the scaling factor exceeded a
factor of 3.5, fewer than 1000 genes received ‘Present’ calls, or microarray
artifacts were visible.  
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Following scaling, a ceiling value of 16,000 units was chosen for all experiments
because it is at this level that we observe fluorescence saturation of the scanner;
values above this cannot be reliably measured.  A threshold of 10 units was
chosen for all experiments because expression levels below this value
demonstrate significant noise and poor reproducibility.  Analysis of samples (as
described below) was performed on the scaled data to which the ceiling and
threshold values had been applied.  The complete dataset after scaling and
thresholding is included as appendix 2.

Knn analysis of tet-EF cells:
To identify genes that have increased expression following the induction of
EWS/FLI in tet-EF cells, we used K-nearest neighbors (Knn) analysis (Golub et
al., 1999).  Simply stated, Knn analysis determines which genes from a given
dataset match an investigator-determined pattern.  Each gene in the dataset is
compared to the reference pattern and a correlation value is determined
mathematically.  The genes are then sorted to identify those with the best
correlation to the reference pattern.

For the purposes of this analysis, a reference pattern was chosen to identify
genes that increase expression following induction of EWS/FLI protein.  It is
difficult to know, a priori, what expression pattern an upregulated gene should
have.  For example, an upregulated gene could demonstrate near maximal
expression immediately following EWS/FLI induction, it could demonstrate a
slow, steady increase over the total time of the experiment, or it could
demonstrate any number of other patterns.  We therefore chose an initial
reference pattern in which gene expression rapidly increases following EWS/FLI
induction (see figure below).  A two class distinction is thus generated, with class
0 consisting of genes whose expression levels correlate with the day 0 timepoint,
(i.e., expressed highly at time 0, and decrease their expression level in the
subsequent days), and class 1 consisting of genes that correlate with with days
1-4 (i.e., that are expressed at relatively low levels at time 0, and increase their
expression level in the subsequent time points; see figure below).  The file for the
reference pattern is included as appendix 3.
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The reference pattern utilizes both experimental runs generated, as shown
graphically in the above figure.  Thus, the time points are neither blended nor
averaged, but rather treated separately.

Genes correlated with the particular class distinctions (e.g. class 0 and class 1)
were identified by sorting all of the genes on the array according the signal-to-
noise statistic (Golub et al., 1999) (µclass 0 - µclass 1)/(σ class 0 + σclass1) where µ and

σ represent the mean and standard deviation of expression, respectively, for
each class.  Permutation of the column (sample) labels was performed to
compare these correlations to what would be expected by chance (see the next
section).

Permutation Test and Neighborhood Analysis for Marker Genes:

A permutation test was used to calculate whether the top marker genes with
respect to a biologically meaningful phenotype (e.g. following induction of
EWS/FLI) were statistically significant (Golub et al., 1999).  To do this we
compared the top signal-to-noise scores for top marker genes and compared
them with the corresponding ones for random permutation versions of the class
labels (phenotype). Typically 1000 random permutations were used to build
histograms for the top marker, the second best, etc. Based on this histogram we
determined the 5% and 1% significance levels and compared them with the
values obtained for the real data set. 

This procedure is motivated by considering the following question: what is the
likelihood that the set of markers genes, for example selected by signal-to-noise
or any other distance or correlation measure, of a phenotype of interest represent
chance correlations and not any biological significant match? If one moves down
the list of markers, how many could one consider as being significantly correlated
and not the results of chance correlations? 

In detail the permutation test procedure is as follows:

• Generate signal-to-noise (µclass 0 - µclass 1)/(σ class 0 + σclass1) scores for all
genes using the actual class labels (phenotype) and sort them
accordingly.  The best match (k=1) is the gene “closer” or more correlated
to the phenotype using the signal-to-noise as a distance function. In fact
one can imagine the reciprocal of the signal-to-noise as a “distance”
between the phenotype and each gene as shown in the figure below.

• Generate 1000 random permutations of the class labels (phenotype). For
each case of randomized class labels generate signal-to-noise scores and
sort genes accordingly.

• Build a histogram of signal-to-noise scores for each value of k. For
example, one for all the 1000 top markers (k=1), another one for the 1000
second best (k=2) etc. These histograms represent a reference statistic for
the best match, second etc. and for a given value of k different genes
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contribute to it. Notice that the correlation structure of the data is
preserved by this procedure. Then for each value of k one determines the
5% and 1% significance levels. See the bottom diagrams in the figure. 

• Compare the actual signal-to-noise scores with the different significance
levels obtained for the histograms of permuted class labels for each value
of k. This test helps to assess the statistical significance of gene markers
in terms of target class-correlations.

In the results section the values for permutation tests of marker genes are
reported in tables with this format: 

Distinction Distance Perm 1% Perm 5% Feature Desc

class 0 0.96694607 1.0144908 0.8333578 M93119_at INSM1 Insulinoma-associated 1

class 0 0.9096911 0.8600172 0.7669801 M30448_s_at Casein kinase II beta subunit 

class 0 0.90010124 0.85051423 0.7251496 S82240_at RhoE

class 0 0.832689 0.84354156 0.7071885 U44060_at Homeodomain protein (Prox 1) 

class 0 0.83225346 0.8009565 0.68034023 D80004_at KIAA0182 gene

…………. ……. ……. ……. ……. …….

class 1 1.6520017 0.9831643 0.84544426 X86693_at High endothelial venule

class 1 1.2436218 0.88150144 0.7559189 M93426_at
PTPRZ Protein tyrosine
phosphatase, receptor-type,
zeta polypeptide

class 1 1.2317128 0.86047184 0.70928395 U48705_rna1_s_at
Receptor tyrosine kinase DDR
gene

class 1 1.2259983 0.8433512 0.68909335 X86809_at
Major astrocytic phosphoprotein
PEA-15

class 1 1.214929 0.8281318 0.6849929 U45955_at
Neuronal membrane
glycoprotein M6b mRNA, partial
cds

class 1 1.2095517 0.79365546 0.6711517 U53204_at Plectin (PLEC1) mRNA

……. ……. ……. ……. ……. …….

The distinction represents the class for which the markers are high (and low in
the other classes). Distance is the signal to noise to the actual phenotype. Perm.
1% and  5% and the corresponding percentiles (significance levels) in the
histograms of random permutation signal to noise scores for a given value of k.
Feature is the gene accession number and Description the gene name and
annotation.  
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Neighborhood Analysis: Assessing Statistical Significance of
Gene-Class Correlations
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Analysis of SRCT cDNA array data:  Khan et al., generated cDNA microarray
data for 63 small round cell tumors (SRCT) of childhood, including 23 Ewing’s
sarcomas, 8 Burkitt’s lymphomas, 12 neuroblastomas, and 20
rhabdomyosarcomas (Khan et al., 2001).  The list of 2308 genes included in the
data analysis was downloaded from
http://www.nhgri.nih.gov/DIR/Microarray/Supplement and converted into a .res
file for use in the GeneCluster 2.0 program (Tamayo et al., 1999).  These data
were pre-filtered (by Khan et al.) to remove uninformative features.

The cDNA microarray dataset of SRCT samples and the Affymetrix microarray
dataset of tet-EF expression are in different formats.  The cDNA microarray
dataset contains IMAGE clone numbers to identify genes, while the Affymetrix
microarray dataset uses Genbank accession numbers for gene identification.  To
directly compare the two datasets, each probe was first converted to a Genbank
entry, and was subsequently mapped to a Unigene cluster.  Unigene clusters
which are present on both microarray platforms were identified.  Each cluster
was then “back-mapped” onto their original dataset.  In this way were were able
to limit the datasets to only those genes that were interrogated by both platforms.
We use the term “probes” to indicate Affymetrix oligonulceotide probesets
corresponding to an individual gene.  We use the term “cDNA” to indicate the
cDNA probe from the SRCT samples corresponding to an individual gene.  The
limited datasets are included as appendices 5 and 6.
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We used Knn analysis (as described above) to identify genes whose expression
is higher in each of the tumor types than in the other tumor types represented in
the dataset.  For example, we used Knn analysis to identify genes whose
expression is “high in Ewing’s sarcoma, low in other tumor types.”  Permutation
testing (as described above) was used to define the list of specific genes that
correlate with the tumor type better than is expected by chance alone.  We
repeated this process for each tumor type, in each instance comparing those
samples to the remaining samples.  The files for the reference patterns are
included as appendices 4a-d.

To allow for comparisons of the resultant gene lists between the SRCT cDNA
microarray and the tet-EF cell microarray data, we identified the Affymetrix
probes that corresponded to each cDNA present on the SRCT microarray.  In
many instances the Affymetrix array uses more than one probeset for each gene,
and so the number of probes identified exceeds the number of cDNAs present on
the SRCT array.

We identified 686 probes whose expression correlated with Ewing's sarcoma at
the 1% significance level, or better.  Similarly, there were 744 genes for Burkitt’s
lymphoma, 772 genes for neuroblastoma, and 931 genes for
rhabdomyosarcoma.  The output from the GeneCluster program was converted
to a Microsoft Excel spreadsheet and is included as appendices 7a-d of the
supplemental information.

We compared the lists of probes generated by Knn analysis and permutation
testing for each of the SRCT types to the data obtained for the tet-EF cells (as
described above).  There were 117 probes that were upregulated in the tet-EF
cells (at the 1% significance level), taken from the total of 2529 available probes
to query.  Thus, 117 of 2529 probes, or 4.6% of the probes were upregulated
following EWS/FLI expression.  The list of these genes is included as appendix 8.

We reasoned that if there were no similarity between the tumor dataset and the
tet-EF cell dataset (the null hypothesis), then one would expect to identify 4.6%
overlap between the tumor-specific data and the tet-EF data by chance alone.
Thus, in the case of Ewing’s sarcoma, for example, there were 686 probes that
were markers of Ewing’s sarcoma at the 1% significance level.  The expected
overlap between Ewing’s-specific genes and tet-EF upregulated genes would be
4.6% of 686 genes, or 32 genes.  We performed Chi-square analysis to
determine a p value for the observed overlap as compared to the computationally
determined expected overlap for each tumor type.

Cluster analysis using self-organizing maps (SOMs):
Knn analysis and permutation testing is a useful tool to identify genes that
behave in a predetermined manner (e.g., that increase in response to EWS/FLI
expression in a particular pattern).  Cluster analysis, on the other hand, allows
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one to identify the predominant patterns of gene expression without
predetermination.  Self-organizing maps (SOMs) were generated using our
Genecluster software (Tamayo et al., 1999).

The data set for tet-EF cells induced to express EWS/FLI were scaled, and had
thresholds and ceilings applied as described above.  Because we were
interested in identifying genes that change during the course of the experiment,
we filtered the list to include only those genes that had at least a 2.5 fold increase
or decrease in at least two time points as compared to the day 0 sample of that
particular experimental run.

This filtering resulted in 695 genes that demonstrated significant variation.  We
used the GeneCluster 2.0 program to generate three clusters (a 1x3 SOM).
Simply stated, with the SOM, one randomly chooses the geometry of the grid
(e.g., a 1 x 3 grid) and maps it into the k-dimensional feature space.  Initially the
features are randomly mapped to the grid but during training the mapping is
iteratively adjusted to reflect the data structure.  Thus, the predominant patterns
of gene expression are identified in an unbiased fashion.

The 1x3 SOM generated three clusters that neatly subdivided the data into genes
that were upregulated, genes that were downregulated, and genes that had a
variable expression pattern.  The genes present in each cluster are included in
appendix 9 of the supplemental information.
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