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1. Description of gene expression profiles 

A. Expression profiles generated

a. KrasLA mouse model

Mouse genotyping and tumor isolation 

KrasLA2 mice on a 129svJae background were crossed with wild-type C57B/6J mice to obtain F1 progeny.  Progeny were genotyped as previously described1. The initial report of this mouse model described two alleles, KrasLA1 and KrasLA2.  All expression profiles in this study were generated using the KrasLA2 mice.  We call this model KrasLA throughout our report for simplicity.   Mice bearing the KrasLA latent allele were allowed to develop to 5-6 month of age and sacrificed by cervical dislocation. Lungs were removed and placed in RNAlaterTM solution (Ambion).  Individual tumors large enough to be easily dissected (3mm-8mm) were removed and cut into 2 pieces. One piece was placed in formalin to be used for histological analysis while the other piece was stored at -800C for RNA/DNA extraction.  

RNA isolation and preparation for microarray analysis
Tumor fragments were placed in Trizol reagent (Invitrogen) and homogenized by using first a KontesTM disposable pestle and then a polytron homogenizer.  RNA and DNA were extracted from Trizol using the manufacturer’s instructions.  RNA was further purified by using a Quiagen RNAeasy column.  Quality of RNA was assessed by gel electrophoresis.  Samples with high quality RNA were then used to prepare cRNA for hybridization to Affymetrix oligonucleotide arrays.  

PCR analysis of tumor DNA

Histologic analysis of tumors isolated from the KrasLA mice demonstrated significant contamination with non-tumor tissue in many samples.  We identified this as a potential confounder in the microarray analysis.  To address this, we developed a Real-Time PCR based method for the analysis of the presence of non-tumor DNA in a tissue sample. 

DNA was isolated using Trizol reagent after separation from the RNA fraction as per the manufacturer’s recommendation.  PCR primers to amplify the Kras/neomycin cassette boundary found in the KrasLA2 mice germline DNA were designed so that the 5’primer was located inside the Kras intronic DNA whereas the 3’ primer was located at the 5’ end of the neomycin cassette. (5’ primer tgcacagcttagtgagaccctg, 3’ primer cctcccctacccggtagaatt).  PCR amplification was quantitated using SYBR green detection on an ABI 7000 sequence detection apparatus.  A taqman probe for 18s ribosomal RNA was used as an internal control.  Determination of the percent of germline Kras latent DNA (non-tumor DNA) was done by comparing the Δ CT value (CtKras/neo-Ct18S) to a standard curve of  Δ CT values in which wild-type DNA (equivalent to tumor DNA in that there should be no amplicon Kras/neo) was mixed with known amounts of spleen DNA from Kras latent mice.  Only samples in which the Trizol-extracted tumor DNA could be shown to have a less than 30% contribution of non-tumor cells were used for microarray analysis.

Figure S1-Representative example of KrasLA murine lung tumor used for gene expression analysis
b. A549 cell line Kras knockdown

Cell lines   

A549 and H1650 cell lines were obtained from the American Type Culture Collection.  Cell lines were grown as per the manufacturer’s recommendations.  An siRNA directed against the serine mutation at codon 12 of human Kras was cloned into the lentilox 3.7 vector2 (sense sequence 5’ -gttggagctagtggcgtag). Transfection of this plasmid into a host strain for virus production was done using 293FT cells as previously described.  Cells carrying the siRNA or an empty vector control were selected by FACS sorting for GFP 5 days after infection.  Cells were replated at a density of 2 X 106 Cells/10cm plate.  48 hours after replating, RNA was extracted as described above for tumor tissue.  Samples with high quality RNA as determined by capillary electrophoresis on an Agilent BioAnalyzer were then used to prepare cRNA for hybridization to U133A human Affymetrix GeneChip oligonucleotide arrays.  6 independent lentiviral infections using the control lentilox 3.7 plasmid (no insert) and 5 independent Kras siRNA infections were done in parallel. 

Western blotting 

Prior to hybridization to arrays, knock-down of Kras in the A549 lentiviral infected FACs-sorted cell lines was done.   For total Kras detection, cells were lysed with 1% SDS boiling lysis buffer and clarified. Lysates were normalized for protein levels and analyzed by Western blotting in 5% BSA using a Kras specific antibody (Santa Cruz , F-234).Total Ras-GTP was recovered from A549 cells using agarose conjugated  Raf-GST as per the manufacturer’s recommendations (Upstate).  Kras was detected from the total Ras-GTP fraction by western blotting as above.  

c. RNA preparation and array hybridization

Target Preparation and Hybridization to Microarrays 

RNA from isolated from tumor samples or cell lines (15µg per sample) was used to create target for hybridization to DNA microarrays. First strand cDNA synthesis was generated using a T7-linked oligo-dT primer, followed by second strand synthesis. An in vitro transcription reaction was performed to generate cRNA containing biotinylated UTP and CTP, which was subsequently chemically fragmented at 95°C for 35 minutes. 15micrograms of the fragmented, biotinylated cRNA was hybridized in MES buffer (2-[N-Morpholino]ethansulfonic acid) containing 0.5 mg/ml acetylated bovine serum albumin (Sigma, St. Louis) to Affymetrix (Santa Clara, CA) MG_U74Av2 arrays (for tumors ) or U133A (for cell lines) at 45°C for 16 hours. Mu_U74Av2  arrays contains 12,143 probes,  ~6,000 for known genes and ~6,000 for expressed sequence tags. U133A arrays contain approximately 22,000 probes.  Arrays were washed and stained with streptavidin-phycoerythrin (SAPE, Molecular Probes). Signal amplification was performed using a biotinylated anti-streptavidin antibody (Vector Laboratories, Burlingame, CA) at 3 µg/ml. This was followed by a second staining with SAPE. Normal goat IgG (2 mg/ml) was used as a blocking agent. Scans were performed on Affymetrix scanners and average differences (expression values) were calculated using GeneChip MAS4 Software (Affymetrix). Minor differences in microarray intensity were corrected using a scaling method as detailed in the next section. 

d.  Array preprocessing 
Criteria for scan rejection included fewer than 1000 genes receiving “Present” calls or visible microarray artifacts. No scans met criteria for exclusion. The raw expression data as obtained from the Affymetrix GeneChips were scaled to account for differences in chip intensities. We calculated the mean expression level (E) for all genes on each array. All scans within an experiment were scaled to the array with the median E value (all expression values are multiplied by Emedian/E).

Expression dataset for the KrasLA mouse model
Sample labels for KrasLA mouse model
Expression dataset for A549 KRas knock-down 

Sample labels for A549 KRas knock-down
The .CEL files for these experiments can be downloaded 

from:

http://web.mit.edu/ccr/labs/jacks/sweetcordero_et_al/cel_files
B. Expression profiles previously published

a. Ann Arbor lung cancer dataset 

This dataset was generated at the University of Michigan by Beer et al3.  It consists of 85 primary lung adenocarcinomas and 10 normal lung samples which were hybridized to the Affymetrix GeneChip Hu6800.  The adenocarcinomas included 67 stage I and 19 stage III tumors.

A full description of the dataset can be accessed at:

http://dot.ped.med.umich.edu:2000/ourimage/pub/Lung/index.html
The authors of this dataset genotyped the samples for Kras status.  Below are links to this dataset and sample labels on our supplemental website.

Expression dataset for Ann Arbor mutant vs. wild-type lung adenocarcinoma 

Sample labels for Ann Arbor mutant vs. wild-type lung adenocarcinoma
b. Boston lung cancer dataset

This dataset was generated at the Dana Farber Cancer Institute by Bhatacharjee et al4. The dataset consists of 185 lung tumor samples and 17 normal lung samples.  Of these, there were 140 lung adenocarcinoma, 5 small-cell lung cancer, 20 carcinoid lung cancer and 21 squamous cell.  Expression profiles were generated using the Affymetrix GeneChip HG_U95Av2.  

This dataset can be accessed from:

Cancer Genomics expression database at the Broad Institute of MIT and Harvard
Further information is also available at:

http://research.dfci.harvard.edu/meyersonlab/lungca/
This dataset contained expression profiles from several

different lung cancer subtypes.  Therefore, it was used to identify which subtype of lung cancer was most similar to the murine models (KrasLa model and NNK models). 

Expression dataset for Boston lung cancer subtypes
Sample labels for Boston lung cancer subtypes
The authors of this dataset genotyped the adenocarcinoma samples for Kras status. 
Expression data for Boston mutant vs wild-type
Sample labels for Boston mutant vs wild-type
c. Datasets used to validate Kras signature.  
Several published and unpublished datasets were used to generate

rank-ordered gene lists to assess for enrichment of the Kras signature:

1)The pancreatic cancer dataset was generated using cDNA arrays at Johns Hopkins University and Stanford University by Lacobuzzio-Donahue et al 5.  These authors generated expression profiles from 17 resected infiltrating pancreatic cancer tissues, and 5 samples of normal pancreas to identify genes that are differentially expressed in pancreatic cancer.  

This dataset can be accessed at:

http://genome-www.stanford.edu/pancreatic1
Expression dataset for pancreatic cancer
Sample labels for pancreatic cancer
See section 4E for details of other datasets. 

d. Global Cancer Map (GCM) dataset

This dataset was generated by Ramaswamy et al at the Dana Farber Cancer Institute and Whitehead Institute6. The dataset consists of 190 tumor samples and 90 normal using the Affymetrix GeneChip Hu6800.  

The original dataset and supporting information can be accessed from:

Cancer Genomics expression database at the Broad Institute of MIT and Harvard
This dataset contained expression profiles from several different human cancers from many different tissues.  Therefore, we used this it to identify whether the murine lung tumors had similarity to any non-lung derived adenocarcinomas or other human cancers. 

Expression dataset for the GCM
Sample labels for the GCM



e. Carcinogen induced murine lung cancer model

This dataset was generated by Bonner et al 7. The samples used were 

murine lung tumors generated by treating mice with the carcinogen 

NNK.  Mice treated with this compound develop lesions suggestive

of human adenoma as well as carcinomas. Since these two types of lesions were analyzed separately by the authors, we have maintained that separation in our own analysis.  

Expression dataset for NNK adenoma
Sample labels for NNK adenoma
Expression dataset for NNK carcinoma
Sample labels for NNK carcinoma
A representative micrograph showing the histology of these tumors was generously provided by Dr. Ming You.

Figure S2- Representative example of Bonner et al carcinogen induced lung tumor used for gene expression analysis.
C. Mapping of genes between human and mouse datasets 

To compare expression data from the mouse and human datasets a correspondence has to be made between probes on the mouse arrays with probes on the human arrays. We used the tool provided by Affymetrix (NetAffx: http://www.affymetrix.com/analysis/index.affx) for the correspondence between the probes8,9. This correspondence is computed using the following procedure. The mouse and human probes were matched to their respective UniGene IDs. UniGene IDs between the species were mapped using a ortholog/homolog list derived from Homologene (http://www.ncbi.nlm.nih.gov/HomoloGene/). A gapped BLAST algorithm was used for sequence comparisons10. 

The mapping to the cDNA dataset (Pancreatic adenocarcinoma) was done using the database unification tool SOURCE at Stanford11. 

http://source.stanford.edu/
2.  Description of computational tools

A.  Signal-to-noise scores and permutation procedures
We used the signal-to-noise (SNR) statistic12 to rank genes and select marker

sets. For each gene, 
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 the SNR statistic is computed as follows
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most correlated with class –1.

A rank-ordered gene list is constructed by ranking the SNR statistic for each

gene.

Marker gene selection is accomplished by truncating the list of genes at a particular SNR score. This is done by defining a statistical significance cut-off based on the results of permutation testing.  


The permutation procedure has been previously described12. It can be
summarized as follows.

1. Generate SNR scores for all genes using class labels and sort them. The best match (k=1) is the gene “closer” or more correlated to the class +1 using the SNR as a correlation function. 

2. Generate 1000 random permutations of the class labels. For each case of randomized class labels generate signal-to-noise scores and sort genes.

3. Build a histogram of SNR scores for each value of k. For example, build one for the 1000 top markers (k=1), another one for the 1000 second best (k=2), etc. These histograms represent a reference statistic for the best match, second best, etc. where many genes contribute to a given value of k. For each value of k, determine different percentiles (1%, 5%, 10%, 50% etc) of the corresponding histogram. 

4.  Compare the actual SNR scores with the different significance levels obtained for the histograms of permuted class labels for each value of k. 

We will refer to this procedure as the rank match permutation. This procedure was 

implemented in the statistical software package GeneCluster2 and is available at:

http://www.broad.mit.edu/cancer/software/software.html
B. Gene Set Enrichment Analysis (GSEA)
The Gene Set Enrichment Analysis (GSEA) methodology provides a general statistical method to test for the enrichment of sets of genes in expression datasets. GSEA considers a priori defined Gene Sets (e.g. members of a metabolic pathway, genes at the same genomic locus, co-expressed genes, etc.).  Given a dataset in which genes can be rank-ordered by the correlation of their expression levels in a collection of samples using a phenotype of interest, the basic GSEA test provides a score which measures the degree of enrichment of a given gene set at the top (highly correlated) or bottom (anti-correlated) of the rank-ordered dataset. GSEA uses the Kolmogorov-Smirnov statistic13 to estimate the degree of enrichment and assesses significance with a p-value obtained by permutation testing. Permutation testing on the phenotype labels preserves the dependencies of the gene’s expression levels. 

By considering groups of related genes, GSEA attains increased resolution,

statistical power and can detect subtle but consistent changes that are often

missed with manual approaches. Using independently defined gene sets can minimize subjectivity in the analysis and, depending on the quality of the annotation, add more biological knowledge and insight.

The GSEA methodology includes two types of analysis:

i) The Basic GSEA test produces a table of enrichment results that can be interpreted and analyzed to assess the enrichment of gene sets of interesting biological significance in relevant datasets. 

ii) The Multiple GSEA test provides an effective approach to deal with the systematic search over databases of large numbers of gene sets or datasets while adjusting for multiple hypotheses testing with high sensitivity.  

An earlier version of GSEA has previously been described14,15. This procedure

was extended to address the case of multiple gene sets as well as multiple datasets (see Figure 1B). This was required because the problem of comparing a variety of animal models over many datasets or phenotype distinctions requires controlling multiple hypothesis testing over all-pairs of models and datasets. In addition, we corrected the normalization procedure when multiple hypotheses are examined. We center the enrichment score by the mean score over permutations and then rescale the enrichment score by the standard deviation over permutations. Previously the square root of the second moment was used to rescale the enrichment score. When the enrichment score is zero mean these two normalizations are equivalent. However, in general the enrichment score is not zero mean so the correct procedure is to center using the mean and rescale using the standard deviation.

The basic GSEA test method

The basic GSEA method is a statistical test that takes the following inputs:

· A dataset
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containing expression profiles for 
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genes in NS samples. 

· A ranking procedure R that takes the dataset 
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as input and outputs a Gene List L = 
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with the genes ordered according to the ranking of interest. For example, typically the genes will be sorted by their correlation 
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 (e.g. signal-to-noise ratio or t-test statistic) with respect to a phenotype of interest H defined as a collection of NS labels
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.  Throughout this paper we use the SNR score to rank order the gene list.

· A Gene Set 
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It produces as output:

· The enrichment score 
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 sorted according to the ranking procedure 
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· A nominal p-value estimating the statistical significance of the enrichment score
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The GSEA method is based on a maximum deviation statistic of two empirical

distribution functions.  This is similar to the Kolmogorov-Smirnov (KS) test that is used to estimate the differences between two distributions.

We first define two empirical cumulative distribution functions
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[image: image21.wmf]G

 that are present (“hits”) or absent (“misses”) in the ordered gene list L according to R up to a given position 
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Given the rank-ordered genes 
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 is the number of genes in the gene set, 
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is the number of genes not in the gene set, 
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 is the number of genes (cardinality) ranked above the ith gene that are in the gene set 
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 is number of genes ranked above the ith gene that are not in the gene set. We now define a “running” enrichment score as the difference between the empirical distribution functions
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The Enrichment Score 
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If the gene set is correlated with the rankings then as one moves from the highest to lowest ranked genes, 
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 the running enrichment score will start at zero, increase (decrease) to a positive (negative) maximum and eventually return to zero. The enrichment score is the maximum positive or negative deviation from zero. If there is actual enrichment of the gene set, and therefore hits are encountered early in the ordered gene list, then 
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 takes a higher value. If the gene set is anti-enriched, then as one moves from the highest to lowest ranked genes, 
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 the running enrichment score will start at zero, decrease to a minimum and then return to zero. If hits occur at random positions in the rank ordered list
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, as it is expected for a gene set with no significant enrichment, then the running enrichment score will oscillate about zero and the magnitude of the enrichment score will be low. The value of 
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 is a direct quantitative measure of the amount of enrichment or over-representation of genes from set 
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 at the top of the phenotype-ordered gene list.  
The significance of an observed 
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 is assessed by comparing its value with the distribution of enrichment scores under the null hypothesis (chance). The distribution of enrichment scores under the null hypothesis is approximated using permutation testing. The two null hypotheses are: phenotype permutation and gene permutation. In the case of phenotype permutation we assume, under the null hypothesis, that the phenotypes are exchangeable and that any enrichment produced by a gene set in this case is the results of chance and not produced by any meaningful biological correlation. The significance is therefore computed by estimating how significant is the observed enrichment score as compared to scores computed when the phenotype labels 
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are randomly permuted. The nominal p-value for the observed enrichment score is computed as follows.
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The histogram 
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 is an approximation of the enrichment score probability density 
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 under the null hypothesis. This non-parametric phenotype-based permutation procedure preserves the “biological” correlation structure of the ordered gene list and is the permutation used in almost all the analysis in the paper (exceptions noted below).

In the case of gene permutation we assume under the null hypothesis that the genes belonging to the gene set 
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are exchangeable with those not in the set. This corresponds to asking how significant is the observed enrichment score as compared to scores computed when the gene set membership is randomly permuted. It also corresponds to randomly shuffling the gene rankings. The advantage of this approach is that the distribution under the null hypothesis 
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has then a very accurate analytic approximation, the standard Kolmogorov-Smirnov statistic given in statistical tables. However, this test tends to ignore gene correlations and over-estimates the significance of a gene set.  We recommend using this permutation procedure only when there are very few samples as was the case with the cell line data.

Multiple GSEA to test against databases of gene sets or datasets

The GSEA procedure described above allows testing for one or a small number of specific gene sets or datasets. However, one is often interested in a systematic search over a large group or an entire database of either gene sets, 
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 In this situation adjustments in the testing procedure are necessary because the more gene sets or datasets that are used the higher the likelihood that one or more will pass the test by chance. This is an instance of Multiple Hypotheses Testing (MHT). 16 This is particularly problematic given that gene sets typically overlap and gene expression profiles have a complex correlation structure. The basic concept underlying MHT can be derived from the following contingency table outlining possible outcomes over the 
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 hypothesis tests. 

· Null hypothesis: gene set is not biologically enriched and the high enrichment score is being produced by chance.

· Alternative hypothesis: gene set is biologically enriched. 

	
	Accept null Hypothesis

(Fails GSEA enrichment test)
	Reject null Hypothesis

(Passes GSEA enrichment test )

	Null true 

(No biological enrichment)
	U     (True negatives)
	V    (False positives)

	Alternative true

(Biological enrichment)
	T     (False negatives)
	S    (True positives)

	
	W   (Total not passing test)
	Z   (Total passing test)


in the context of GSEA U is the number of gene sets that were correctly stated as not being significant, S is the number of gene sets that were correctly stated as significant, T is the number of gene sets that should have been significant but were noted as not significant by the test, and V is the number gene sets incorrectly stated as significant. The quantity V is the number of false positives or type I errors and is typically what is controlled in MHT procedures. Most MHT procedures fall under the category of controlling the Family Wise Error Rate (FWER)16 or the False Discovery Rate (FDR).16 In this paper we control the FWER.  The procedure used to control the FWER is defined as the validation GSEA (vGSEA) and is described below. In addition to the multiplicity issue the enrichment statistic has to be normalized since the size of the gene sets vary and the gene-to-gene correlation structure of the datasets vary. For this reason we use a normalized enrichment score (NES) when looking at multiple comparisons. 

Validation GSEA (vGSEA)

Validation vGSEA was used when one or more gene sets were compared against multiple datasets.  This is accomplished by modifying the permutation test to take into account the results of randomly permuting all the gene sets and datasets. This needs to take into account the fact that the null distribution for each dataset or gene set can be drastically different. The variance of the null distribution is a function of gene set size and can vary by a factor of 100 over the gene sets. To address this problem we transform the enrichment scores so that the null distributions of the transformed scores are automatically centered and scaled over the gene sets or datasets. We then approximate the null distribution over all gene sets and datasets by constructing a histogram of the maximum deviations over all the hypotheses of the transformed score.

In the applications of GSEA in the paper the multiplicity is over gene sets and datasets. 

The validation p-value is computed in a series of steps. We first compute a matrix, 
[image: image50.wmf],,

,

jk

p

f

 of the scores over phenotype label permutations, 
[image: image51.wmf],

p

  datasets, 
[image: image52.wmf],

j

and gene sets, 
[image: image53.wmf].

k

 

[image: image71.wmf]1 to 

p

=P


We then transform the matrix 
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 into a new matrix 
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 for which the distribution over a gene set dataset pair is centered and scaled and rescale the raw enrichment scores.
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Using the centered and scaled matrix 
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 we now construct a histogram that approximates the null distribution and computes a p-value for each dataset/gene set. Each dataset/gene set pair is a hypothesis and the FWER computes a p-value that is uniform or simultaneous over all hypotheses.
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The histogram 
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 is an approximation of the density under the null hypothesis 
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 which holds simultaneously over all gene sets/dataset pairs. 

The validation p-values are useful for controlling multiple hypotheses when selecting statistically significant gene sets in the context of reducing the FWER.

C. Neighborhood Mantel (NM) Methodology
The neighborhood Mantel score is measure of the correlation of gene neighborhoods between a reference dataset and a comparison dataset. 

The 
[image: image59.wmf]L

 genes most correlated with a given phenotypic label in the reference dataset are extracted and a matrix of pair-wise correlations between these genes in the reference dataset using a Pearson correlation statistic is computed
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where 
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is the expression profile of the ith gene over the samples in the reference dataset and 
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A similar matrix of pair-wise correlations between the same genes is computed in the comparison dataset


[image: image63.wmf],

,

=

ij

C

ij

ij

gg

M

gg


where 
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is the expression profile of the ith gene over the samples in the comparison dataset and similarly 
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is the expression profile of the jth gene. The classical Mantel statistic17 is used to compute the neighborhood score: 
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 are the means and standard deviations of the matrices of pair-wise correlations in the reference and comparison datasets.

3. Application of computational tools to validate the mouse model

A. Extraction of KrasLA gene sets

From the KrasLA mouse dataset, two gene sets were constructed. One corresponding to genes up-regulated in tumors compared to normal lung and he second corresponding to genes down-regulated in tumors compared to normal lung.  For selection of these gene sets we used the procedure implemented in Significance Analysis of Microarray’s (SAM) 18, a program available at:

http://www-stat.stanford.edu/~tibs/SAM/
We used a fold change of 1.5, and 
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 and obtained 617 up-regulated genes and 510 down-regulated genes. The FDR of genes for these parameters was < 5%. We performed 1000 random permutations.

This results in the following two gene sets:

Table S1-KrasLA model up-regulated gene set
Table S2-KrasLA model down-regulated gene set
B. Classification of human lung cancer in the space of the KrasLA gene sets

From the Boston data we extracted a dataset consisting of only those genes present in the two KrasLA gene sets (up and down-regulated genes). 

Dataset:
Expression dataset for Boston lung tumors in space of KrasLA gene sets 

Tumor vs. normal sample labels for the Boston dataset
We used a linear SVM classifier and the leave-one-out procedure as an accuracy measure for the cancer vs. normal distinction.

The expression values in this dataset are all divided by 10,000 for numerical stability and the regularization parameter, 
[image: image69.wmf],

C

 was set to 100. We used the SvmFu (http://five-percent-nation.mit.edu/SvmFu/ ) implementation of SVMs.  

The leave-one-out error rate was 97% (196/202).

C. Extraction of carcinogen adenoma and carcinoma gene sets

Due to the paucity of samples (n=3) in both the NNK- adenoma and NNK-carcinoma models, neither SAM nor the rank matched permutation procedure (GeneCluster) are able to identify significantly differentially expressed genes. Nevertheless,  our goal was to make as fair a comparison of the mouse models  as possible. Because the significance of a gene set is influenced by the number of genes in the gene set, we sought to control for this. Hence, we used the same number of genes to construct the NNK-carcinoma and NNK-adenoma gene sets as were used in the KrasLA model.  The genes in these two models were rank ordered by SNR.

This resulted in four gene sets:

NNK-adenoma up-regulated gene set matched to HGU95Av2 probes
NNK-adenoma down-regulated gene set matched to HGU95Av2 probes
NNK-carcinoma up-regulated gene set matched to HGU95Av2 probes
NNK-carcinoma down-regulated gene set matched to HGU95Av2 probes
D. Inadequacy of gene overlap statistic (Venn diagram)

Here we present details that illustrate the inadequacy of Venn diagrams in discriminating between phenotypes. These observations motivate the use of a more sophisticated enrichment procedure such as GSEA.

One approach to comparing the mouse models to the human cancer subtypes is the look at the top markers in the mouse data as well as the human data compute the overlap (Venn diagram) and use this to measure how similar the mouse model is to the human datasets. There are several limitations to this approach:

1. it is not sensitive to position

2. cut-offs used for the list of ‘top markers’ are arbitrary

3. the use of a hypergeometric distribution to compute a p-value does not take into account gene-gene correlations.

Therefore, as shown below, simple overlaps cannot differentiate clearly the similarity between various human cancer subtypes and the KrasLA mouse model. The table displays the overlap of the KrasLA gene set with the top 500 markers in the Boston lung cancer subclasses (cancer subclass vs. normal) and the global cancer map (cancer vs. normal). SNR was used to compute the rank ordered gene lists.

TableS3: Venn diagram of KrasLA model and various cancer subtypes

	Human Cancer Phenotype (Dataset)
	# of Genes that Overlap with KrasLA Gene Set

	Pancreatic adenocarcinoma
	124 

	Lung squamous cell carcinoma (Boston)
	114 

	Lung adenocarcinoma (Boston)
	113

	Lung adenocarcinoma (Ann Arbor)
	110

	Glioblastoma
	109

	Medulloblastoma
	100

	Renal cell carcinoma
	81

	Ovarian adenocarcinoma
	66

	Lung small-cell carcinoma (Boston)
	65

	Lung carcinoid (Boston)
	61

	Prostate adenocarcinoma
	59

	Breast adenocarcinoma
	56

	Bladder cell carcinoma
	51


E. Enrichment of mouse model gene sets in the GCM and Boston lung cancer subtypes dataset

We used GSEA to compare the three mouse models: KrasLA, NNK-adenoma and NNK-carcinoma with a variety of human cancer subtypes: uterus, pancreas, breast, medulloblastoma, renal, prostate, bladder, ovary, glioblastoma, lung adenocarcinoma, lung carcinoid, lung squamous, and lung small-cell.

Gene sets:

KrasLA up-regulated gene set matched to HGU95Av2 probes
KrasLA down-regulated gene set matched to HGU95Av2 probes
NNK-carcinoma up-regulated gene set matched to HGU95Av2 probes
NNK-carcinoma down-regulated gene set matched to HGU95Av2 probes
NNK-adenoma up-regulated gene set matched to HGU95Av2 probes
NNK-adenoma down-regulated gene set matched to HGU95Av2 probes
Datasets:
Global cancer map:

Expression dataset for GCM in HGU95Av2 probes 

Sample labels for GCM
The global cancer map file contains the following labels:

· pancreas: tumor vs. normal 

· breast: tumor vs. normal 

· medulloblastoma vs. normal brain 

· renal: tumor vs. normal 

· prostate: tumor vs. normal 

· bladder: tumor vs. normal 

· ovary: tumor vs. normal 

· glioblastoma vs. normal brain 

Boston lung cancer subtypes:


Expression dataset for Boston lung subtypes in HGU95Av2 probes 

Sample labels for Boston lung subtypes
The Boston lung cancer subtypes file contains the following labels:
· adenocarcinoma vs. normal 
· carcinoid vs. normal 
· squamous vs. normal 
· small-cell vs. normal 
The results are shown in Table 1A and 1B of main text.
F. Identification of the adenocarcinoma signature

The genes in the KrasLA up-regulated gene set to the left of the enrichment peak in the Boston adenocarcinoma vs. normal comparison were designated as the adenocarcinoma signature. We summarize this in Table S3 by showing the average expression level for all probes for a given gene and the average rank-order of each gene in the KrasLA and Boston gene expression datasets.

Table S4- Adenocarcinoma signature
GSEA output
G. Methods for assessment of p-value underestimation

The cut-off for a gene set defined from a rank-ordered gene list (as is the case for the KrasLA up and down-regulated genes) is of necessity somewhat arbitrary. Therefore, it is necessary to determine for given gene set whether the ES scores and p-values obtained in GSEA are representative of those that would have been obtained if different cut-offs had been used to define the gene set.  To assess whether the p-values obtained using the SAM 1.5 fold cut-off used in our analysis could be an underestimation we used 2 approaches. The first is to use alternate cut-offs for the SAM procedure. We performed this analysis for the case of GSEA of the Kras mutant vs wild-type distinction in human lung adenocarcinoma.  The results are shown in Table S5 below.  This table shows that depending on the SAM cut-off used, the ES score and p-value obtained can vary.  For the up and down regulated Kras LA gene sets, 7 out of 8 cut-offs used were significant at .05.  Note that here we use nominal p-values and not FWER pvalues because we are interested in assessing each gene set independently.  The limitation of this approach is that for SAM cut-offs that are reasonably conservative, there will be a large degree of overlap between the alternate gene sets selected.  Thus, alternate SAM cut-offs does not adequately address the significance of the p-value obtained.  To address this problem, we have made use of permutation and random sampling.   

We obtained 1,000 random subsets of 100 genes from either the top or bottom 1,000 KrasLA marker genes or a random sampling of all genes and then to compute the ES score across all these gene sets. The results of this analysis for the KrasLA up and down gene sets using GSEA to assess enrichment  in the rank-ordered gene list of Kras wild-type vs. Kras mutant lung adenocarcinomas is shown in  Figure S3A. As expected, only the KrasLA up gene sets  consistently give ES scores (red)  with p-values <.05% in contrast to the KrasLA down gene sets (blue) or the random gene sets (yellow) Figure S3B shows the results for the same gene sets but using the small cell lung cancer vs. normal lung as the rank-ordered list. As expected, the ES scores are randomly distributed and not consistently above a threshold for significance.   Figure S3C shows the results for gene sets derived from the NNK-adenoma model.  This analysis demonstrates that the p-values using the gene set we define (tables S1 and S2) are representative and not overly optimistic.
In addition to random sampling, we also permute the mouse phenotype (tumor vs. normal) to obtain alternative gene sets.  These gene sets obtained from the permuted phenotype all have the same size as the original gene set. The permuted gene sets were then used in GSEA to define the distribution of enrichment scores that are obtained form random data.  Note that this is different from random sampling of the genes because since only the samples are permuted, any underlying correlation structure for genes to each other is maintained.  Thus, this is a stricter test for significance of a p-value than the random sampling.  The distribution of the random enrichment scores and the relative location of the enrichment score for the gene set we used are shown in Figure S4.  Note that because all the gene sets are of the same size, the ES scores are asymptotic with the p-values and thus only ES scores are shown.   
Table S5A: GSEA results for Boston lung adenocarcinoma Kras mutant vs. wild-type gene list using KrasLA up-regulated gene sets chosen at different SAM thresholds.

	Gene Set
	ES
	NES
	Nominal 

P-Value
	# of Genes

	Gene Set used in paper (SAM 1.5 fold cut-off)
	0.123
	2.10
	0.001
	368

	SAM 1.25 Fold cut-off 
	0.131
	1.72
	0.009
	429

	SAM 2 Fold cut-off
	0.171
	1.51
	0.005
	148

	SAM 2.5 Fold cut-off
	0.216
	1.817
	0.006
	90


Table S5B: GSEA results for Ann Arbor lung adenocarcinoma Kras mutant vs. wild-type gene list using KrasLA up-regulated gene sets chosen at different SAM thresholds.

	Gene Set
	ES
	NES
	Nominal 

P-Value
	# of Genes 

	Gene Set used in paper (SAM 1.5 fold cut-off)
	0.153
	1.686
	0.021
	302

	SAM 1.25 Fold cut-off
	0.101
	1.26
	0.065
	401

	SAM 2 Fold cut-off
	0.189
	1.72
	0.009
	132

	SAM 2.5 Fold cut-off
	0.163
	1.412
	0.048
	79


(Note: The number of genes column represents the count after mapping from mouse genes to human genes. For example the original KrasLA 617 up-regulated gene set from the mouse after mapping to the Hu6800 chip resulted in 302 probe set ids).
H. Mantel analysis of mouse and human datasets

From the three datasets KrasLA, Boston lung cancer subtypes, and GCM we constructed three new datasets by restricting the above datasets to those genes in the KrasLA up-regulated gene set which had probes on the MGU74aV2, Hu6800, HGU95Av2 chips. We addressed the issue of multiple probes by averaging over probes that shared the same gene symbol. The number of genes on all three chip types was 368.

Datasets:

Boston mantel dataset



KrasLA mantel dataset
GCM mantel dataset




The KrasLA dataset contained the mouse tumor samples and a gene-to-gene correlation matrix was constructed. This matrix served as the reference matrix.
The Boston mantel dataset contains the following subtypes:
· adenocarcinoma 
· carcinoid 
· squamous  
· small-cell
For each subtype a gene-to-gene correlation matrix was constructed. Each of these matrices served as a comparison dataset.

The GCM mantel dataset contains the following subtypes:
· pancreatic tumor
· breast tumor  

· medulloblastoma 

· renal tumor 

· prostate tumor
· bladder tumor  

· ovary tumor 
· glioblastoma
For each subtype a gene-to-gene correlation matrix was constructed. Each of these matrices served as a comparison dataset.

Table 2 in the main text contains the mantel score for each correlation matrix and the mouse KrasLA reference matrix.

The error interval for the adenocarcinoma and squamous comparisons was computed by subsampling. The datasets were split in half and the mantel score was computed for each split with respect to the KrasLA reference matrix.

The difference was then computed between the mantel scores for the splits. This was done over 50 random splits and the average difference was the reported error interval.

4. Application of computational tools to identify a Kras signature

A. Individual genes in the Boston and Ann Arbor datasets are not significantly differentially expressed.  

For the Boston and Ann Arbor Kras mutant vs. wild-type distinction there are no genes that pass permutation testing using either the rank matched permutation procedure (GeneCluster) or SAM at 5% FDR.

B. Enrichment of mouse model gene sets in human samples with Kras mutation

We used GSEA to compare the three mouse models: KrasLA, NNK-adenoma and NNK-carcinoma with the Kras mutant vs. wild-type distinction in the Boston and Ann Arbor datasets.
Gene sets:

KrasLA up-regulated gene set matched to HGU95Av2 probes
NNK-carcinoma up-regulated gene set matched to HGU95Av2 probes
NNK-adenoma up-regulated gene set matched to HGU95Av2 probes
KrasLA down-regulated gene set matched to HGU95Av2 probes
NNK-carcinoma down-regulated gene set matched to HGU95Av2 probes
NNK-adenoma down-regulated gene set matched to HGU95Av2 probes
Datasets:

Expression dataset for Boston Kras status
Sample labels for Boston Kras status
Expression dataset for Ann Arbor Kras status  

Sample labels for Ann Arbor Kras status
C. Definition of Kras signature

The genes in the KrasLA up-regulated gene set to the left of the enrichment peak in the Ann Arbor dataset were designated as the Ann Arbor Kras signature.

Similarly, the genes in the KrasLA up-regulated gene set to the left of the enrichment peak in the Boston dataset were designated as the Boston Kras signature.

The Kras signature is the intersection of the above gene sets.  We summarize this in Table S6 by showing the average expression level for all probes for a given gene and the average rank-order of each gene for the Boston and Ann Arbor gene expression datasets. 

Table S6-Kras signature
D. Validation of Kras signature by RT-PCR in Kras wild-type vs mutant cell lines

For the RT-PCR validation of the Kras signature in the human lung cancer cell lines, we selected a subset of genes and designed primers to span exons using primer expressTM software(Applied Biosystems). Real-time PCR analysis was done on an ABI 7000 sequence detection apparatus using SYBR green.  Primer sequences are available on request.  Cell lines were grown to 70% confluency and RNA was extracted as described above for tumor RNA except that an on-column DNAse step was added to ensure no carry-over of DNA into the PCR reaction. RNA was reverse transcribed into cDNA using random hexamers and the cDNA was then used as template for the PCR reaction. For real-time PCR analysis of Kras expression levels, a TaqMan probe was designed to detect the serine mutation at codon 12 found in the A549 cell line. 

PCR and TaqMan probe sequences are available on request.  

E. Enrichment of Kras signature in pancreatic cancer

To determine whether the Kras signature was significant beyond lung cancer, we used GSEA to assess the enrichment of this gene set in several datasets. Ideally, one would like to know if the Kras signature is enriched in other non-lung Kras wild-type vs Kras mutant tumor comparisons.  Since such a dataset is not available, we used datasets for tumors which are known to have high incidence of Kras mutation as surrogates.  Among all carcinomas, pancreatic cancer has the highest incidence of Kras mutation.  Thus, we would expect that the Kras signature would be enriched in a pancreatic cancer vs.normal pancreas comparison.  We compiled a collection of 10 expression datasets, where each dataset consisted of a single pair of phenotypes representing  various distinctions of interest.  Two pancreatic datasets were available.  One is part of the GCM and was previously used in Table 1A and 1B.  The other was generated by Iacobuzio et al5.  GSEA was run on this pancreatic cancer dataset with the KrasLA signature mapped to cDNA probes. 
Notice that for these comparisons we do not report FWER p-values. The reason for this is that each dataset serves as an independent hypothesis and we are querying whether this dataset is enriched or not for the KrasLA signature. We are not asking about significance simultaneously over all hypotheses nor are we doing a screen. We are sampling testing each hypothesis individually and asking whether those we expect to be enriched are enriched and those we expect not to be enriched are not enriched.
KrasLA up-regulated gene set matched to cDNA probes
Consistent with the frequency  of Kras mutation (50%) in colon cancer, the ES score for this dataset was statistically significant (Table S7).  The colon cancer dataset used is available at:
http://microarray.princeton.edu/oncology/.
The prostate and renal tumor vs. normal comparisons were not significant. The prostate cancer dataset used is available at:

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
In addition, other phenotypes (recurrent vs non-recurrent tumors, etc) were also used for comparison.  No statistically significant enrichment of the Kras signature was seen in any of these datasets.  The Gsea output for the GSEA of the Kras signature using the Iacobuzio et al dataset is shown in Figure 4.  
Table S7: GSEA of Kras signature on human datasets 

	Human Cancer Phenotype (Dataset)
	ES
	NES
	Nominal p-value

	Pancreatic adenocarcinoma vs. normal 5
	0.248
	3.01
	< 0.001

	Pancreatic adenocarcinoma vs. normal (GCM)
	0.158
	1.94
	0.005

	Prostate adenocarcinoma vs. normal 20
	0.193
	1.36
	0.070

	Adenocarcinomas metastatic vs. non-metastatic21
	0.133
	0.758
	0.288

	Renal carcinoma vs. normal (unpublished)
	0.11
	1.01
	0.340

	Hepatic carcinomas non-recurrent vs. recurrent tumors 21
	0.119
	1.02
	0.160

	Gastric adenocarcinoma primary tumor vs. metastatic tumor 22
	0.105
	0.727
	0.354

	Breast adenocarcinoma non-recurrent vs. recurrent tumors (unpublished)
	-0.071
	-0.732
	0.318

	Breast adenocarcinoma ER+ vs. ER- 22
	-0.075
	-0.691
	0.384

	Bladder carcinoma vs normal (GCM)
	-0.839
	0.034
	-2.402

	Glioblastoma vs normal brain (GCM)
	-0.837
	0.109
	-1.053

	Ovrarian adenocarcinoma vs normal (GCM)
	-0.838
	0.118
	-1.049

	Uterine adenocarcinoma vs normal (GCM)
	-0.835
	0.238
	0.386

	
	
	
	

	
	
	
	

	
	
	
	


F. Enrichment of KrasLA signature in A549 cell line Kras knock-down

GSEA was used to analyze the A549 cell line dataset cancer with the KrasLA signature mapped to the U133A chip.

KrasLA up-regulated gene set matched to the U133A chip
The A549 gene expression dataset was filtered using a 2.0 fold variation filter resulting in 5714 probe sets.

ES=0.167, NES = 1.491, p-value =0.025.

Gsea output
We summarize the expression level of the Kras signature genes in the cell line knock-down experiment in Table S4 by showing the expression level for all probes  and the rank-order of each probe in the cell line data. Due to the small sample size of this dataset (6 controls and 5 knock-downs) we also assessed statistical significance by creating a null distribution from 10,000 random gene sets size matched to the Kras signature set. The pvalue was still significant at 5% (0.0234).

Table S8-Kras signature in A549 knock-down
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Constructing matrix � EMBED Equation.DSMT4  ��� of re-sampled enrichment scores


For � EMBED Equation.DSMT4  ���


For � EMBED Equation.DSMT4  ���


      For � EMBED Equation.DSMT4  ���


		Randomly permute the phenotype labels for dataset � EMBED Equation.DSMT4  ���to produce a 


 	reshuffled dataset � EMBED Equation.DSMT4  ���


		Recompute the ranked list by applying R to � EMBED Equation.DSMT4  ���


     		Compute the enrichment score � EMBED Equation.DSMT4  ���








Centering and scaling matrix� EMBED Equation.DSMT4  ��� 


For � EMBED Equation.DSMT4  ���


      For � EMBED Equation.DSMT4  ���


Compute the mean and variance of each dataset, gene set pair 


	� EMBED Equation.DSMT4  ���


For � EMBED Equation.DSMT4  ���


	           Center and scale � EMBED Equation.DSMT4  ���, � EMBED Equation.DSMT4  ���





	Normalize the enrichment score





          � EMBED Equation.DSMT4  ���	


	





Approximate null distribution and compute p-values


For � EMBED Equation.DSMT4  ���


Compute the maximum deviation from zero over all datasets gene set pairs,� EMBED Equation.DSMT4  ���:


	� EMBED Equation.DSMT4  ���


Construct a histogram � EMBED Equation.DSMT4  ���from � EMBED Equation.DSMT4  ���, 


The FWER p-value for the gene set/dataset pair corresponding to the kth gene set and the jth dataset is � EMBED Equation.DSMT4  ���





	





Procedure to compute GSEA nominal p-value


For � EMBED Equation.DSMT4  ���


Permute the phenotype labels  to produce reshuffled dataset � EMBED Equation.DSMT4  ���


Recompute the ranked list by applying R to � EMBED Equation.DSMT4  ���


Compute the enrichment score given the ranked list: � EMBED Equation.DSMT4  ���


Construct a histogram � EMBED Equation.DSMT4  ���from � EMBED Equation.DSMT4  ��� 


The nominal p-value of � EMBED Equation.DSMT4  ���is determined by its position (percentile) 


in the histogram � EMBED Equation.DSMT4  ���
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