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Supplementary Figure Legends 

 
SI Figure 1. Fewer significant regions are identified in an analysis restricted to primary GBMs. 

The results of the original GISTIC analysis of glioma (displayed as in Fig. 2b) are presented alongside a 

similar analysis of only the primary GBMs in the dataset. All of the regions that are significant among 

primary GBMs are also significant in the larger dataset including secondary GBMs and lower-grade 

gliomas. Some events, such as 8q gain and 19q loss, are significant in the larger dataset but not among 

only primary GBMs. This loss of significance may be either due to a decreased prevalence of these 

events among primary GBMs, or decreased power to detect low-prevalence aberrations in a smaller 

tumor set. 

 

SI Figure 2. GISTIC applied to different glioma datasets generates nearly identical results. The 

results of the original GISTIC analysis (displayed as in Fig. 2b) are presented alongside similar analyses 

of 178 tumors on 100K SNP arrays (1) and 37 tumors on 16K CGH arrays (2). Only minor differences 

in results are seen; these are due to differences in the distribution of glioma subtypes within each dataset, 

(a high proportion of grade III gliomas among the 178 tumors and of secondary GBMs in the CGH 

analysis) and to stochastic fluctuation. As expected, significant aberrations tend to reach higher levels of 

significance (lower q-values) as the number of samples increases. 

 

SI Figure 3. Comparison between GISTIC analyses of glioma and lung cancer reveals distinct 

profiles. The results of the original GISTIC analysis of glioma (displayed as in Fig. 2b) are presented 

alongside a similar analysis of 81 lung cancer samples using 100K SNP arrays (3). The overall pattern is 

strikingly different, although both tumor types exhibit similar amplifications of chr7 (including EGFR) 
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and deletions of chr9p (CDKN2A/B) and chr13 (RB1). A more detailed analysis of the lung cancer 

genome using GISTIC is the subject of a forthcoming manuscript (4). 

 

SI Figure 4. Broad amplification of chromosome 7 vs. focal amplification of EGFR. (a) A histogram 

of the copy numbers (displayed as log2 ratios) across samples at the EGFR locus shows tumors divide 

into 3 classes: log2 ratios less than 0.1 (unamplified, associated with 7norm), between 0.1 and 0.9 (low-

level amplifications, associated with 7gain), and exceeding 0.9 (high-level amplifications, or 

7gainEGFRamp). No samples had log2 ratios between 0.7 and 1.3, suggesting a qualitative difference 

between 7gain and 7gainEGFRamp. Note that the values 0.1 and 0.9 coincide with θamp and θhi_amp (see SI 

Methods). (b) Copy-number profiles (displayed as log2 ratios, blue line) across chr7 (Mb coordinates on 

left) are displayed for representative samples with 7norm, 7gain, and 7gainEGFRamp. The presence of low-

level amplification at the EGFR locus does not imply a focal amplification. In fact, 42 out of 44 cases 

exhibited low-level amplification across most of the chromosome. The high level of EGFR amplification 

seen in 7gainEGFRamp, however, is always focal and never extends over most of the chromosome. 

 

SI Figure 5. MET/HGF+ cell lines activate MET and AKT in an HGF-dependent manner but do 

not activate EGFR. (a) Treatment with SU11274 reduces MET and AKT activation in MET/HGF+ 

cells. Whole-cell lysates from MET/HGF+ (see Fig. 3) Hs683 and LN18 cells were obtained after 24-

hour serum starvation in the presence of the indicated concentrations of SU11274. (b) MET and AKT 

activation in MET/HGF+ cells are HGF-dependent. Whole-cell lysates were obtained after 24-hour 

serum starvation in the presence of (as indicated) anti-HGF antibodies (5 µg/ml) or SU11274 (2.5 µM), 

or with HGF (50 µg/ml) added for the final 10 minutes. (c) Neither the presence of 7gain nor high levels 

of EGFR expression are associated with activation of EGFR. Cell lines were characterized as having 
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high EGFR expression if their median-normalized, median absolute deviation-scaled RNA expression 

levels (using only concordant EGFR probesets on Affymetrix U133 arrays) were greater than zero. None 

of these cell lines have focal amplification of EGFR. Immunoblots to the indicated epitopes were 

performed on whole-cell lysates prepared after 24-hour serum starvation. EGFR-dependent lung cancer 

cells (H3255) (5) were included as positive controls. (d) These cells also do not exhibit decreased 

viability when treated with the EGFR inhibitor erlotinib. Viability was measured using WST dye after 

exposure to inhibitor at the indicated concentrations for 96 hours.  

 

SI Figure 6. Flow chart representing the components of the 4 stages of the GISTIC algorithm. 

Each step in GISTIC is represented by a block or bullet and is described in a subsection of 

Supplementary Methods. 

 

SI Figure 7. Evolution of the data as it progresses through GISTIC. (a) Raw signal intensities (log2 

scaled) are displayed across the genome (y axis) for 141 tumors and 33 normal samples (y axis; sample 

characteristics indicated on top). Copy-number aberrations are difficult to distinguish at this step, prior 

to division by normal controls. (b) Raw genotyping data are displayed for these same samples. Large 

regions of homozygosity (seen as stripes lacking the usual frequency of yellow heterozygous markers) 

likely represent LOH events. (c) Batch effect correction removes artifactual copy-number changes 

associated with date of data generation. (Top panel) Inspection the dates on which data was obtained 

(batches, indicated by color bar at the top) shows that high-level changes in signal intensity are restricted 

to a single batch in some markers (arrows). If not corrected, these signal intensity changes will be seen 

as recurrent copy-number changes. (Bottom panel) After batch correction, these artifacts are removed. 

(d) Normalized signal intensities displayed for the tumor samples only reveal copy-number aberrations, 
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including losses (blue) and amplifications (red). Although systematic errors have been minimized by 

batch correction and selection of appropriate normalization controls (see Supplementary Methods), 

substantial random errors persist. The last row of sample characteristics (top) indicates samples with low 

tumor purity (in green; see Supplementary Methods), which are removed from subsequent steps. (e) 

Histograms of normalized data in the quality control step enable identification of datasets in which 

contamination with normal cells obscures the signal contributed by tumor cells. (Top panel) Histograms 

depicting normalized signal intensity distributions that would be expected from the indicated tumor 

purities.  A pure tumor would be expected to display separate peaks corresponding to the different copy-

number levels in the tumor.  The width of each peak will vary according to the level of noise in the 

array, and the distance between peaks represents the amount of signal contributing to copy-number 

estimates. As the proportion of tumor cells decreases, so does this signal, leading to a smaller distance 

between peaks. At low proportions of tumor, peaks associated with different copy-number levels 

become indistinguishable, indicating the signal is obscured by noise. (Bottom panel) Actual histograms 

(grey) and smoothed versions (dark lines) representative of the patterns seen among the 141 gliomas 

analyzed. These roughly correspond to the expected distributions seen in the top panel. (f) Segmented 

signal intensity data for the 105 glioma samples with high tumor purity reveal the copy number 

aberrations with much lower levels of random noise. (g) Segments with log2 signal intensity ratios 

greater than 0.1 are considered amplified and displayed here. (h) We identified loss and retention of 

heterozygosity events (blue and yellow, respectively) among the 105 tumors with high tumor purity by 

comparing the observed frequency of heterozygous SNP markers to the expected frequency in each 

region of the genome (6). (i) The frequency of amplification and average level of amplification across 

the genome are displayed in panels to the right of the amplification data (from panel [g]). High scores 

for either one of these indicates a high likelihood that amplifications in that region of the genome are not 
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solely chance events. GISTIC uses a G score (far right panel) that integrates both of these measures to 

identify aberrations that are associated with cancer. (j) Comparison of observed G scores to similar 

scores generated after permuting the marker labels allows us to determine the statistical significance of 

aberrations in each region (displayed on the right as FDR q-values to account for multiple hypotheses; 

see Supplementary Methods). Regions with q-values less than 0.25 (green line) are considered 

significantly aberrant. (k) “Peel-off” method identifies independent peaks within a statistically 

significant region. The top left panel displays a chromosome from an idealized set of tumors, with 

amplified regions in orange; q values associated with these regions are shown in the top right panel. For 

every chromosome in which some of these q values attain statistical significance (the significance 

threshold is denoted by the green line), the “peel-off” algorithm identifies the region with minimal q 

value (red line) as the primary peak. All aberrations involving the primary peak (marked by red stars) 

are then removed (faded orange, bottom left panel), and G scores and FDR q values are recalculated 

(bottom right) using only the remaining aberrations. If these reach significance, the region with minimal 

q value is selected as the secondary peak. The process iterates until no statistically significant regions 

remain.(l) In the case of chr7 amplfication, this “peel-off” algorithm enables us to identify separate 

peaks associated with EGFR and MET. The original amplification data for chr7 is displayed in the top 

panel along with the associated G scores. The entire chromosome is associated with G scores that are 

greater than the significance threshold, but a clear peak is observed at the EGFR locus. When we 

remove all amplicons that cover this peak region, we find a second peak that crosses the significance 

threshold at the MET locus (middle panel). When amplicons covering this second peak are removed, the 

remaining amplicons do not reach statistical significance (bottom panel). 
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SI Figure 8. Copy-number changes tend either to be focal or near the size of a chromosome arm. 

The distribution of sizes of all amplifications and deletions in the dataset is displayed. The majority of 

events fall into one of 2 peaks: either focal events covering less than 10% of a chromosome arm, or 

broad events covering more than 90% of a chromosome arm. 

 

SI Figure 9. LOH is usually, but not always, associated with deletions. (a) The statistical significance 

of deletions (blue) and LOH (purple) are displayed as in Fig. 2b. All significant regions of LOH are also 

significant regions of deletion, with two exceptions: (i) a small region containing EGFR gives the 

appearance of LOH in highly amplified samples due to allelic imbalance, and (ii) chromosome 17p, 

containing TP53. (b)  TP53 primarily undergoes copy-neutral LOH. The top panel displays loss of 

heterozygosity (LOH, blue) and retention of heterozygosity (yellow) along chromosome 17 for 8 

gliomas (labeled A-H) with LOH at the TP53 locus. The bottom panel displays signal intensities (red = 

high, blue = low, white = neutral) and copy-number calls (red bar = amplified, blue bar = deleted) for 

those gliomas. LOH at TP53 is associated with neutral copy numbers in gliomas A-G. Across our 

dataset, copy loss (as in glioma H) is seen in only 3 of 23 gliomas observed to have LOH at the TP53 

locus.  
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Supplementary Methods 

 
Introduction: Genomic Identification of Significant Targets in Cancer (GISTIC) 

We describe a general method for Genomic Identification of Significant Targets in Cancer (GISTIC). 

GISTIC can be divided into four stages (SI Fig. 6): 

(1) Characterization of chromosomal aberrations on a per-tumor basis 

(2) Aggregation of data from different tumors to differentiate between driver and passenger 

aberrations. 

(3)  Identification of peak regions most likely to contain the oncogene and tumor suppressor 

gene (TSG) targets. 

(4) Classification of tumors on the basis of their driver aberrations. 

Stage 2 contains the 2 central features of the algorithm: that it scores each genomic marker according to 

an integrated measure of the prevalence and amplitude of copy-number changes (and only prevalence in 

the case of LOH), and that it assesses the statistical significance of each score by comparison to the 

results expected from the background aberration rate alone.  

 

In the following section we provide an overview of the motivations and methods behind each of the 4 

stages. Detailed descriptions of each stage, to allow reproduction of the results, are included in the 

following 4 sections, with subsections dedicated for each block or bullet in SI Fig. 6. For clarity, the 

first time a parameter is described it is marked with a boldface font and the value that we used appears in 

parentheses. The evolution of the data as it progresses through the algorithm is visualized in SI Fig. 7. 

 

 

Overview of the method 

With data describing chromosomal aberrations in large tumor sets, the aberrations that drive 

tumorigenesis and the oncogenes and TSGs they most likely target can be identified if the following 4 

issues are addressed. (1) The aberrations in each of the tumors must be accurately mapped. (2) Driver 

aberrations that rise above the background rate of random passenger aberrations must be identified. (3) 

For each driver aberration, the loci most likely to contain the targeted oncogenes or TSGs must be 

identified. (4) Tumors must be classified as to whether they are aberrant at the predicted driver loci, so 
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that the effects of those aberrations can be studied. GISTIC represents an example of such an approach, 

in which these 4 issues are addressed in the 4 stages of the algorithm. 

Stage 1 
In this stage, chromosomal aberrations are mapped in each tumor. Here, the goal is to maximize the 

accuracy with which these aberrations are identified, by (1) minimizing systematic error, (2) minimizing 

random error, and (3) discarding poor-quality datasets. Chromosomal regions with high signal intensities 

are designated as amplified, regions with low signal intensities are designated as deleted, and regions 

with an excess of homozygous SNP markers are designated as having lost heterozygosity. 

 

Systematic errors arise when datasets from different samples are generated under slightly different 

experimental conditions. A primary example is batch effect, in which data generated on different days 

varies slightly. We limit batch effects on our copy-number assessments by using a batch effect 

correction module, in which we identify and correct markers that show consistent signal within batches 

but large variations between batches. Other experimental variables, such as day of manufacture of the 

array, or slight variations in PCR conditions, can also lead to systematic errors even between samples 

within a batch. Many array comparative genomic hybridization platforms minimize these by using 2-

color systems in which tumor and control DNA are hybridized simultaneously to the same array. In 

single-color systems such as the Affymetrix SNP arrays that we use prominently in this study, these 

systematic errors can be minimized by selecting appropriate controls for each tumor, such that the 

controls share similar variations in their noise profiles across the genome.  

 

Several methods exist to reduce the effects of random noise in copy-number datasets, most often by 

identifying regions of copy-number change and averaging the signal intensities for all markers within 

them (7). Examples include segmentation algorithms such as Circular Binary Segmentation (8) and Gain 

and Loss Analysis of DNA (GLAD) (9), Hidden Markov Model-based approaches (10, 11), and 

clustering methods (12). Each has advantages and disadvantages that may vary with the noise 

characteristics of the dataset. We used GLAD due to its high sensitivity for identifying copy-number 

changes (7). However, this high level of sensitivity occasionally leads GLAD to report non-existent 

copy-number changes in very small segments (fewer than 4 markers). We therefore filter these out. 
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In poor-quality datasets, the signal intensity variations due to copy-number changes are obscured by 

noise. We therefore identify high-quality datasets as having separate peaks, corresponding to different 

copy numbers, in histograms of the signal intensity data. Poor-quality samples, particularly those with 

extensive contamination with normal DNA, generate insufficient signal to distinguish separate peaks, 

and are discarded. Likewise, duplicate samples from the same individual, identified by similar SNP 

genotypes, are eliminated. 

Stage 2 
This stage contains the two core features of GISTIC (Figure 1). First, we score each genomic marker for 

the sources of evidence that it is in a region affected by driver aberrations (the G-score). Here, we treat 

amplifications, deletions, and LOH events separately—allowing for the possibility that a region could be 

significantly amplified and deleted simultaneously (for instance if an oncogene and TSG neighbor each 

other, with some samples amplified and others deleted). In the cases of amplifications and deletions, we 

assume that both the prevalence and average amplitude of these events independently indicate the 

likelihood with which a region is affected by such driver aberrations. Therefore, we use a simple 

integrated score of the prevalence of the copy-number change times the average (log2-transformed) 

amplitude. In the case of LOH, amplitudes do not apply and we therefore score each marker only by the 

prevalence of events.  

 

Second, we compare these G-scores to the distribution of scores expected if only random aberrations 

were observed. This distribution can be determined by rescoring the genome after permuting marker 

locations within each sample; we instead derive a semi-exact estimate. The comparison of actual scores 

to those generated by our null model of random aberrations allows us to calculate the statistical 

significance of each G-score (represented by False Discovery Rate q-values(13)), representing the 

likelihood that the observed data could have been generated by chance alone. 

 

Regions of the genome that are too frequently or highly aberrant to be explained by chance alone are 

selected as likely to harbor driver aberrations. 

Stage 3 
In this stage, GISTIC identifies the most likely locations of the oncogene or TSG targets of the driver 

aberrations identified in stage 2. This stage is designed with 4 considerations in mind: (1) these gene 
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targets are most likely to lie in the regions most frequently aberrant to the highest degree (similar to the 

minimal common region of aberration, with high-amplitude aberrations are given greater weight); (2) 

occasional random aberrations may occur near, but not overlapping, real oncogenes or TSGs, distracting 

us from their true locations; (3) a single region may contain more than one independently targeted gene; 

and (4) some aberrations may exert their effects through broad-based changes across much of the length 

of the aberration. This latter consideration is suggested (but not proven) by the high prevalence of broad 

aberrations that consistently affect large regions of the genome (near the size of a chromosome arm) (SI 

Fig. 8). 

 

Given (1), for each region found in stage 2 to contain likely driver aberrations, we select the “peak” 

regions with maximal G-scores and (an equivalent statement) minimal q-values as most likely to contain 

the oncogene or TSG targets. In each case, we allow for (2) (the possibility that random aberrations are 

skewing the location of the peak) by leaving each sample out in turn, and recalculating the peak 

boundaries—only the widest boundaries are taken. We also allow for (3) (that a single region may 

contain two or more independent gene target) by applying a “peel-off” method designed to identify 

aberrations that overlap but are independently statistically significant. Finally, we allow for (4) by 

determining, for each peak region, whether the aberrations at this locus are primarily focal or broad, or 

whether both focal and broad aberrations are independently significant. 

Stage 4 
To determine the effects of driver aberrations identified in stage 2, we must classify tumors as to 

whether they have these aberrations. Because the peak regions are most likely to contain the oncogene 

or TSG targets of these aberrations, GISTIC first classify each tumor according to its copy-number 

status at the peak regions. For broad aberrations, which may be specifically disrupting a large region of 

the genome, GISTIC also classifies each tumor as to whether it is aberrant across most of the length of 

the region. 
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Detailed description 

Required inputs 
The inputs to GISTIC are the following files (details regarding software availability and exact file 

formats can be found at http://www.broad.mit.edu/cancer/pub/GISTIC) 

(a) A .snp file that represents either the signal intensities or log2 ratio for each of the genomic 

markers (in our case, SNPs, although non-polymorphic loci interrogated by comparative 

genomic hybridization methods may also be used) across a set of samples.  

(b) A .loh file representing the inferred loss of heterozygosity (LOH) status, either as discrete calls 

or probabilities (similar format to .snp files). 

(c) A sample info file which denotes for each array its array name, sample name, tumor type, 

ploidy, paired normal, batch, gender and platform. Additional information for each sample can 

be supplied for visualization and correlation purposes.  

(d) A genome info file with the location of each marker. 

(e) A cytogenetic info file with cytoband locations. 

(f) A copy number variation file with the locations of germline copy-number polymorphisms.  

(g) A transcript database with gene locations. 

(h) An optional list of known target gene symbols for visualization purposes. 

(i) An optional list of general cancer gene symbols for reporting purposes. 

(j) A parameter file with values for the various parameters used in the algorithm. 

 

 

Stage 1: Characterization of chromosomal aberrations on a per-tumor basis 

In this stage, we systematically characterize on a genome-wide basis the amplifications, deletions, and 

loss-of-heterozygosity (LOH) events affecting each tumor. We aim to reduce inaccuracies in these 

determinations due to systematic artifacts, random error, and poor-quality data. In the case of copy-

number determinations, systematic errors are controlled by correcting for batch effect, selecting 

appropriate germline datasets for normalization, and controlling for germline copy-number 

polymorphisms. The effects of random noise are minimized by use of a segmentation algorithm and 



Assessing the Significance of Chromosomal Aberrations in Cancer - GISTIC 

 

 15

application of a threshold for calling amplification or deletion that is rarely attained by fluctuations in 

segmented copy-number values in normal samples. Duplicate samples from one individual and samples 

with poor-quality data (i.e. copy-number changes were not reliably distinguishable) are eliminated. 

 

The initial steps are aimed at controlling for systematic errors that can lead to false amplifications and 

deletions at a single genomic location across tumors. Even when these artifacts occur at a very low 

frequency, when we consider the hundreds of thousands of markers that may be present in the dataset, 

we are likely to encounter a few artifacts whose consistency across multiple tumors will lead them to 

appear even more significant than real changes associated with tumorigenesis. Therefore, controlling for 

these systematic errors is an essential step in a high-resolution genome-wide approach. We and others 

(14-16) have found that slight variations in experimental conditions between successive arrays can lead 

to these systematic changes in signal intensities. We therefore control for these experimental variations 

in two steps: (1) correcting for variations due to batch effect, which are defined by the date and core-

facility in which the data was generated; and (2) selecting for normalization a set of normal samples that 

are most similar to the tumor sample according to their baseline signal intensity variations across the 

genome. 

 

Source data 
GISTIC can be applied to any dataset representing copy-number or LOH data measured across the 

genome. As an example of its application, we used 100K SNP array data from 141 gliomas, along with a 

set of normal controls. Here, probe-level signal intensity data were normalized to a baseline array with 

median intensity, using the invariant set normalization method (17). The signal intensity of each SNP 

was then obtained using a model-based (PM/MM) method (18). Genotyping calls were made by 

Affymetrix Genotyping Tools Version 2.0. 

 

SI Fig. 7a-b show the raw signal and genotyping calls as heatmaps. 

 

Data preprocessing 
The noise in signal intensities is dominated by a multiplicative component. Hence, to make the noise 

constant across signal intensity, we log2-transform the data using a floor value of 1 to avoid small or 
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negative numbers.  Next, we bring the samples to the same scale by subtracting the median value across 

all markers for each sample. 

 

Batch effect correction 
In this step, we assume that signal intensity variations due solely to batch effect are likely to be marked 

by their consistency within a batch, and variance from other batches.  We therefore compare, for each 

marker independently, the distribution of signal intensities from all tumor and normal samples in a given 

batch to that of the tumor and normal samples from all other batches, using a variance-thresholded t-test 

with minimal variance of σ2
min (=0.16 in our case), which represents the typical level of noise per 

marker and can be estimated using replicate datasets. For markers and batches where the t-test yields an 

asymptotic p-value less than Pbatch_effect_cutoff  (= 0.001), a constant is added to the signal intensities of 

that marker in all samples in each variant batch, to yield the same mean signal intensity as all non-

variant batches. Batches with fewer than Nmin (=5) samples are not modified in this manner.  

 

Among our data, 4.9% +/- SD 9.4% of loci were modified in each batch in this manner. The locations of 

these loci varied widely between batches, such that 63% of loci were corrected in at least one of the 14 

batches (SI Fig. 7c). However, in a majority of cases these corrections were small, with the signal 

intensity difference averaging 4.2% +/- SD 2.5% of the unperturbed signal intensity. Thus the benefit 

from batch correction largely derives from correcting the small number of markers with more 

pronounced batch effects. 

 

Selection of germline samples for normalization 
In order to obtain copy number estimates for a sample we first calculate log2 tumor-to-normal copy-

number ratios at each marker. These are calculated by subtracting the average of log2-transformed signal 

intensities from a set of normal controls from the log2-transformed signal intensity of the tumor. When 

examining the normal controls, we observed that subsets of samples exhibit systematic deviations in 

signal intensity across megabases of the genome. Replicate datasets representing the same sample often 

display different patterns of systematic deviation (data not shown). This suggests that some of the 

variation in signal intensities between samples is due to experimental factors that enter during data 

generation. Some of these experimental factors have been previously modeled (14, 15); it is possible that 
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many have not. We chose to correct the systematic effects due to these factors, including those that have 

not been modeled, simply by selecting the set of normal controls that share similar noise profiles to the 

sample being normalized. To this end, we identify the Nclose(=5) normal samples that are closest to the 

sample being normalized measured by Euclidean distance between the log2-transformed signal profiles 

(again ensuring these profiles are at the same scale between samples by subtracting the median value 

across all markers for each sample), and use these for normalization. 

 

SI Fig. 7d shows the normalized data as a heatmap. 

 

Merging platforms 
In some cases each sample is profiled using more than one platform, interrogating different sets of loci. 

For example, the 100K SNP arrays we used consist of independent 50K Xba and Hind array platforms.  

In this step, we merge the data from these platforms, interlacing markers according to position on the 

genome. In principle, this step can be used to merge data from different technologies such as array CGH 

or BAC arrays. However, care must be taken if the different platforms have highly variant dynamic rage 

or noise characteristics.  

 

A more general problem is that of merging datasets in which each sample was assayed using a separate 

set of platforms. We do not address this issue here. 

 

Quality control 
In this step, samples with poor-quality data are removed. Copy-number profiles can suffer from either of 

two features that will make them non-informative. First, extreme levels of noise can lead to the inability 

to distinguish copy-number changes; second, high levels of contamination with normal cells (even in 

samples that appear highly enriched for tumor) can dampen the signal intensity differences between 

copy-number changes to the extent that copy-number changes are not robustly resolved.  These two 

features work in tandem: a larger amount of contaminating normal DNA may be tolerated if the signal-

to-noise ratio is high and small changes in signal can be robustly detected.  
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We assessed both noise level and normal contamination simultaneously by generating histograms of the 

log2 ratios collected at each autosomal marker locus (SI Fig. 7e). We first smooth the log2 ratios by 

taking the mean value across a running window of Hwindow (=501) markers. The histogram is generated 

using a bin size Hbin (=0.01), and smoothed by convoluting with a Gaussian distribution that has a 

standard deviation of Hsigma (=0.05).  

 

For a dataset from a homogenous tumor sample, we expect to identify separate peaks in this histogram 

corresponding to the separate copy numbers in the tumor’s genome (SI Fig. 7e). As more contaminating 

normal DNA is mixed with the tumor’s, however, the observed signal in all cases will approach normal 

levels and the peaks will tend to coalesce. Conversely, as the noise level increases, so will the width of 

each peak, resulting in a single broad hump from which separate peaks cannot be resolved. Therefore, 

each tumor whose smoothed histogram has only a single peak is marked as having failed quality control. 

 

Some datasets may not display separate peaks despite high-quality data from highly enriched tumors 

because copy-number changes are not extensive enough in the tumor to be visible as separate peaks in 

the histogram. This is likely to be true particularly among tumor types with predominantly diploid 

genomes. In the case of glioma, however, almost all tumors appear to suffer significant levels of 

aneuploidy. Eight samples were analyzed after tumor purity was assured by obtaining DNA after needle 

dissection. In all eight, separate peaks indicative of abnormal copy numbers could be observed. 

However, in four of these cases where DNA was obtained without needle dissection, separate peaks 

were not observed. This suggests that the majority of tumor samples will have detectable copy-number 

alterations by histogram analysis if sufficiently pure.  

 

Based on these analyses, measurable copy number differences were resolved in the histograms of 105 

samples; all of these were included in further analysis. The clinical characteristics of these included 

samples are similar to the overall tumor set (SI Table 1), suggesting the selection process is not biased. 

The copy-number profiles of these 105 samples (segregated on the left in Fig. 2a) are similar to those 

that were removed (on the right), but with greater amplitude of variation. Nevertheless, we removed the 

samples on the right because the low amplitudes with which their copy numbers vary makes their 

classification (aberrant vs. not aberrant) at any locus less reliable. 

  



Assessing the Significance of Chromosomal Aberrations in Cancer - GISTIC 

 

 19

Removal of duplicates 
Due to inaccuracies in sample tracking, large tumor sets can contain duplicate samples from the same 

individual. This can bias downstream analyses of the frequencies and common boundaries of 

chromosomal aberrations. The use of SNP arrays for genome analysis also provides genotype data that 

allows for the elimination of duplicates by identifying samples with similar genotypes. Here, we score 

by genotype each of the mtot SNPs that are assayed in each sample: A=1, AB =2, and B = 3. For every 

pair of tumor samples, we calculate the Euclidean distance between all minf SNPs that are informative 

(i.e. not “No Call”) in both samples, and divide by inf totm m⋅ . Pairs for which this normalized 

Euclidean distance is less than a threshold θdup (= 0.4 on the basis of experience with known replicates) 

are identified as coming from the same individual. For such duplicates, only the tumor with higher-

quality data (represented by more distinct peaks in its quality control histogram, above) is retained. 

 

Copy-number assessment 
Copy-number determinations are most reliable when data from neighboring markers with the same 

underlying copy number are combined to reduce the effects of noise.  Several methods for such noise 

reduction have been reported (7-10, 12). We chose to use the segmentation method Gain and Loss 

Analysis of DNA (GLAD) (9). The input to the segmentation algorithm are the log2 ratios rij for each 

marker i and sample j. We denote the segmented (and smoothed) data by cij. (N.B. we do not utilize 

GLAD postprocessing clustering steps, but only utilize the initial steps aimed at segmenting and 

smoothing the data). GLAD tends to misidentify outliers as separate segments (7). To correct this, we 

join any segment with fewer than Nshort(=5) markers to the neighboring segment with the closest cij, and 

assign the new segment a new cij reflecting the median rij across all markers in the combined segment. 

This step is performed recursively until no segments with fewer than Nshort markers are left.  

 

SI Fig. 7f shows the segmented data for the 105 samples that passed quality control.  

 

Copy number variation (CNV) control 
To eliminate copy-number variations derived from polymorphic germline events, markers from regions 

with known germline copy number variations as listed in http://projects.tcag.ca/variation/ (19-22) are 

removed. 
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Identification of copy-number aberrations 
In order to call regions amplified or deleted we first need to set log2 ratio thresholds: θamp and θdel. 

Markers with cij>θamp are called amplified and ones with cij<θdel are called deleted. We set these 

thresholds based on the empirical distribution of values in normal samples. First, all samples are brought 

to the same baseline signal intensity by subtracting the median cij value across all markers from each 

sample, to generate new cij values. The thresholds are then set to be such that only Fnormal(=0.5%) of 

markers on autosomes pass each threshold among normal samples. In the case of the glioma dataset, this 

yielded θamp=0.10 and θdel = -0.10. 

 

To test the reliability of these calls, in the case of 13 tumors we obtained DNA from separate aliquots of 

the same tumor, where both aliquots produced data with measurable copy number differences on 

histogram analysis (see above).  A median of 90.2% of copy-number calls were identical between the 

separate aliquots of each tumor. This is a conservative estimate of the reliability of these calls, as some 

of the difference between aliquots reflects real differences due to tumor heterogeneity. 

 

SI Fig. 7g displays the log2 signal intensities in the regions of the genome for which cij>θamp. 

 

LOH assessment 
When using paired tumor and normal genotyping data, the LOH status at all loci (including non-

informative loci) is inferred by applying an HMM that takes into account the LOH calls at informative 

loci (6). When using genotyping data from unpaired tumors (as is our case), the LOH status at all loci is 

inferred on the basis of extent of regional homozygosity, taking into account the haplotype structure of 

the genome (6). 

 

SI Fig. 7h displays the LOH identified among the 105 tumors with high tumor purity. 

 

At this point, each sample has been assessed for amplifications, deletions, and LOH, and in Stage 2 we 

will distinguish between likely driver and passenger aberrations. 
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Stage 2: Aggregation of data from different tumors to differentiate between driver and 

passenger aberrations  

To determine which of the aberrations identified in Stage 1 are likely to represent driver events, we 

aggregate the data from all tumors used in the analysis to generate summary scores for amplifications, 

deletions, and LOH. The statistical significance of each score is determined by comparison to the 

distribution of scores obtained by all permutations of the data (using a semi-exact approximation), with 

correction for multiple hypothesis testing. 

 

Scoring the copy-number genome 
We assume there are two sources of evidence that a copy-number aberration is not a chance event: f, the 

frequency of the aberration across the sample set and c , its average amplitude. Therefore, the scores we 

generate for amplification and deletion events reflect both sources of evidence: 

 
ampamp amp

i iifG c= × , and 

deldel del

i iifG c= − × .       (1) 

We wanted the score to represent the negative log of the likelihood of observing the contributing 

aberrations by chance alone. We found that log2 ratios approximate these negative log likelihoods, both 

for amplifications and deletions. as estimated by the overall frequency of aberrations, as a function of 

amplitude, across our glioma dataset (data not shown). 

Note that the scores in equation (1) can also be represented as a sum across the n samples in the set: 

amp

ampamp amp 1

| θij

i i iji n j c
fG c c

>

= × = ∑ , and 

del

deldel del 1

| θij

i i iji n j c
fG c c

>

= × = −− ∑ .     (2) 

Using the sum representations we can calculate the amp
iG scores, for example, by first replacing cij≤θamp 

with 0 and then summing over j. 
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As LOH is not associated with an amplitude, the LOH score represents only the frequency of LOH 

across the sample set which can also be rewritten as a sum: 
LOHLOH

1

1 1
|LOH ij

i i n j
fG

=

= = ∑ .      (3)  

 

SI Fig. 7i displays the G scores associated with amplifications in our tumor set, along with the 

frequency and average amplitude components of these scores and the per-tumor amplification data (after 

replacing values ≤θamp with 0) that gave rise to them. 

 

Null hypothesis generation: an analytic derivation of the null distribution 
To assess which of these peaks are statistically significant, we identify those G scores which rise above 

the null distribution of values one would expect to obtain from random passenger aberrations alone. 

Since passenger aberrations could occur anywhere in the genome, one may model this null distribution 

by recalculating the G scores across all combinations of permutations of the marker labels within each 

sample. Note that by assuming, in these permutations, that all observed aberrations (including driver 

aberrations) are passengers, we generate a conservative, high estimate of the background aberration rate. 

 

Although one can simulate the null distribution by performing each of these permutations in turn, we in 

fact derive a semi-exact estimate of this null distribution. For amplifications and deletions separately, we 

replace the log2 ratios in each marker not called aberrant with zero: 

( )amp amp
ij ij ijc c I c θ= × >%  and       

( )del del
ij ij ijc c I c θ= × <%        (4) 

As noted above, the G scores for each marker can be calculated by summing the corresponding c% across 

all samples. Under the null hypothesis, the arrangement of c%  values is independent between samples 

and therefore the distribution of the sum of ijc% across the samples is the same for all markers and equals 

the convolution of the distributions of c%  values in each sample. We approximate these distributions by 
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generating histograms for each sample: ( )amp amp
j

h c%  and ( )del del
j

h c%  using a bin size of Cbin (=0.001). 

Note that as Cbin approaches zero the approximation becomes exact. For LOH the histograms have two 

values: the fraction of markers that do not have LOH and the fraction that do. The final distribution for 

Gamp is given by amp amp amp
1 2 nh h h⊗ ⊗L  and similarly for Gdel and GLOH. 

 

Significance testing 
We next assign statistical significance to the observed G scores using the null distribution calculated in 

the previous step. The p-value for an observed G score is simply the sum of the tail of the null 

distribution from the observed score and above. Next, in order to correct for multiple hypothesis testing 

we apply the Benjamini-Hochberg FDR procedure (13) to obtain q-values. These corrected probabilities 

are an upper bound for the expected fraction of false positives. Note that these q values are conservative 

since we treat all markers as independent hypotheses when in fact close markers are highly positively 

correlated.  

 

Regions with q values of less than 0.25 are marked as significantly aberrant (Fig. 2).  

 

SI Fig. 7j displays the q-values associated with amplifications in our tumor set, along with the G scores 

they are associated with and the per-tumor amplification profiles on which these scores are based. 

 

 

Stage 3:  Identification of peak regions most likely to be contain the oncogene and tumor 

suppressor gene targets 

In this stage, we consider for each significantly aberrant region which are the most likely oncogene and 

TSG targets. We consider the possibility that the region may encompass two or more independently 

aberrant genes. We also consider the possibility that a random “passenger” mutation occurring in a 

single sample near, but not overlapping, the oncogene or TSG genes will distract us from those genes. 
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Identification of minimal targeted loci 
If the driver aberrations within a region are selected due to their effects on a single gene, we would 

expect that gene to lie in the region where the largest number of tumors are aberrant to the highest 

degree. This locus equates with the locus with the minimal q value (and maximal G score). Therefore, 

within each region found to have a q value less than 0.25, we identify the peak region with minimal q 

value as the primary target. This peak region might contain many markers, as long as they have exactly 

the same q value. Usually these are neighboring markers that lie on the same copy-number or LOH 

segment in every sample in the dataset. 

 

Identification of independent peak regions—“Peel-off” algorithm 
It is possible that two or more peaks within a significant region are independently aberrant, but due to 

overlap between some aberrations associated with each peak, the entire region appears statistically 

significant.  To recapture all of these independent peak regions, we implement an iterative “peel-off” 

algorithm (SI Fig. 7k). Here, for each chromosome that has a region with a q value less than 0.25, we 

remove from the data all aberrations overlapping the region with minimal q-value on the chromosome 

(the primary peak). We then recalculate G scores and q values taking a conservative approach, where we 

calculate p and q values based on the original null distribution including all aberrations. We remove 

aberrations by setting all consecutive markers that exceed the θ  threshold to zero. If any part of the 

chromosome continues to have a q value less than 0.25, we reiterate the procedure by identifying the 

region with the minimal q value as a separate peak and “peel-off” aberrations it overlaps. These 

iterations continue until no q values less than 0.25 are obtained in the chromosome. Note that this 

method greedily assigns an aberration that overlaps two or more peaks to the most significant locus.  

 

In the glioma dataset, the “peel-off” algorithm identified 2 peak regions (corresponding to EGFR and 

MET) independent amplified within chromosome 7, although all of chromosome 7 constitutes a single 

region of significant amplification (Table 1; SI Fig. 7l). 

 

Determination of boundaries for each peak region 
For each independent peak, the boundaries of the region of minimal q value encompass the region with 

the greatest evidence for containing the oncogenes or TSGs, as that region is most aberrant in the largest 
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number of samples. These particular boundaries, however, may be shifted from the oncogenes or TSGs 

due to the presence of a nearby random passenger mutation or by errors in the boundaries determined by 

the segmentation analysis in a single sample. Therefore, to ensure robustness of the boundaries that we 

identify, GISTIC recalculates the boundaries of each peak region after leaving out each sample in turn, 

and takes the maximum upper and minimum lower boundary of the peak of the score among all 

iterations. Note that this procedure uses only the data which corresponds to the “peeled-off’ segments 

that are associated with the analyzed peak. All genes that lie wholly or partially within these boundaries 

are considered candidate oncogenes or TSGs. If no gene is within these boundaries, the nearest gene is 

considered the likeliest candidate. 

 

Broad vs. focal aberrations 
Examination of the glioma genome (Fig. 2) reveals broad regions undergoing significant amplification 

or deletion in addition to focal events. The finding that some significant focal events lie within 

significant broad regions, whereas others do not, suggests the possibility that overlapping broad and 

focal aberrations may target different genes (see Main Text). Therefore, for each peak region we 

determine whether it is subject to significant broad or focal aberrations or both.  

 

Any region that is statistically significant over more than half a chromosome arm harbors significant 

broad aberrations. Also, for each peak, the G score required to attain significance (Gsig) is subtracted 

from the maximal G score, and the width of the region attaining this score is assessed. If this region does 

not cover more than half a chromosome arm the peak harbors significant focal aberrations. For peaks 

that rise to G scores less than twice Gsig, the width of the region at half the maximal G score is used to 

determine whether the peak is due primarily to broad or focal events. The result in glioma is the 

identification of 16 significant broad events and 16 significant focal events (Table 1). 

 

Here, we use a cutoff of half a chromosome arm to define broad aberrations due to the finding that most 

copy-number aberrations in the glioma dataset were either substantially larger than this (generally the 

size of a chromosome arm or greater), or substantially smaller. 
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Stage 4:  Classification of tumors on the basis of their driver aberrations 

To study the effects of driver aberrations, tumors must be classified according to whether they have 

them. For each tumor we determine whether it is aberrant at each peak region and, in the case of copy-

number aberrations, whether it has a high- or low-level copy-number change. In the case of statistically 

significant broad regions, we classify tumors as to whether they are aberrant across most of the region.  

 

Tumor classification per peak regions 
Samples are classified according to whether they have the appropriate aberration at each peak region. 

For instance, for each peak region of amplification, samples that were called amplified in Stage 1 are 

classified as aberrant; likewise for peak regions of deletion and LOH. In cases where these peaks 

comprise more than one marker, any sample that was called aberrant in the majority of these markers is 

classified as aberrant. In most cases, these calls are identical between markers within the peak region of 

minimal q value, as changes in any one sample will lead to changes in the G score and therefore the q 

value. 

 

For peak regions of copy-number change, samples are also classified as to the amplitude of that change 

at each locus. The signal intensity distribution at EGFR (SI Fig. 4a) suggests a qualitative difference 

between samples with low-level amplification (θamp < cij < 0.9) and samples with high-level 

amplification (cij > 0.9, corresponding to at least 3.7 copies in a diploid cell). Therefore, we classify each 

tumor according to whether it has a low- or high-level amplification at each peak region of 

amplification, using cutoffs of θamp and θhi_amp (=0.9). To similarly distinguish between low-level (e.g. 

hemizygous) and high-level deletions, we applied cutoffs of θdel and θlo_del (= -1.3, corresponding to less 

than 0.9 copies in a diploid cell).  

 

Tumor classification per broad regions 
Samples are also classified as to whether they have each of the broad aberrations identified in Stage 3, 

using the boundaries of the broad region as determined in Stage 3. Any sample that in Stage 1 is called 

with the appropriate aberration (e.g. amplified in a significantly amplified region) in more than half of 

the markers within this broad region is classified as having a broad aberration in the region. 
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Having classified every tumor as to its status at every targeted locus and broad region of aberrancy, the 

GISTIC algorithm is complete. 

 

Output from GISTIC 
The results of the algorithm are contained in the following files: 

(a) Display files in .pdf, .eps and .fig formats showing the variation in G scores and associated q 

values for all markers along the genome. 

(b) An all lesions file that describes all of the significant aberrations and peak regions, and the status 

of each sample at each focal and broad region. 

(c) A segmented_data file that represents the cij values after batch correction, normalization, 

segmentation analysis, and removal of copy-number polymorphisms. 

(d) A gene table which lists the genes that overlap with each of the peak regions. Genes that are 

listed as known targets or generally related to cancer are highlighted (if such lists are provided).  

(e) A histograms file (.pdf) with a histogram plot for each sample and a mark indicating whether 

the sample has passed the histogram quality control step. 
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Supplementary Notes 
 
Supplementary Note 1: LOH analysis 

The G scores and corresponding significance levels for LOH (SI Fig. 9) yield a similar pattern to 

deletions, with 2 exceptions: (i) High-level amplifications of EGFR on chr7 are scored as LOH because 

they give rise to an allelic imbalance that obscures the minor allele; and (ii) chr17p (containing the TSG 

TP53) appears to primarily undergo copy-neutral LOH, with multiple samples exhibiting regional 

homozygosity despite retaining two copies of the chromosome (SI Fig. 9). Other than these cases, the 

similar pattern between LOH and deletions indicates that the reduction to homozygosity that represents 

LOH is usually due to hemizygous deletion of one allele. However, the ability to map deletions is 

superior to LOH, due to 2 factors: (i) LOH is obscured by low levels of contaminating normal DNA that 

are tolerated by deletion mapping, and (ii) the resolution of LOH analysis is poorer than for deletions. 

This latter factor is true when paired normal samples are used to map LOH (because most SNP markers 

are homozygous in the normal sample and therefore uninformative as to LOH status of the tumor) or 

when paired normal samples are not used (given the necessary reduction in resolution this implies) (6). 

For these reasons, we placed more emphasis on the results for deletions except in the primarily copy-

neutral case of LOH at chr17p. 

 
 
Supplementary Note 2: Minimal common region analysis of 141 gliomas 

As a comparison to the GISTIC method, we performed an analysis of the minimal common regions of 

copy-number variation in our 100K SNP array data from 141 gliomas. Here, GLAD (9) was used to 

segment the raw log2 ratios generated from the signal intensity (after brightness correction (17) and 

model-based expression(18)) of the tumor divided by the mean signal intensity of all normal controls at 

each SNP locus. Segments for which the median log2 ratio across all SNPs was greater than 0.1 or less 

than -0.1 were called amplified or deleted, respectively. For each region found to be amplified or deleted 

in over 5% of samples, the minimal common regions of amplification or deletion were identified as 

potentially harboring oncogenes or tumor suppressor genes. This approach yielded 144 minimal 

common regions of amplification or deletion, harboring 5 of the known oncogenes and tumor suppressor 
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genes in glioma. These results are similar to prior analyses of the glioma genome in terms of the number 

of regions selected and sensitivity to known oncogenes and tumor suppressor genes (Table 2). 

 

The GISTIC analysis of the same dataset appears to provide superior specificity (identifying only 27 

peak regions for copy-number aberrations) and sensitivity (identifying 9 of the known oncogenes and 

tumor suppressor genes in glioma) (see Main Text, Table 2). Three factors may contribute to the high 

level of specificity of GISTIC: (1) When using very high-resolution datasets, even systematic errors 

occurring in a small fraction of markers and tumors can give rise to large numbers of artifactual 

aberrations across the dataset. GISTIC minimizes these in multiple preprocessing steps. (2) Without 

controlling for the background aberration rate, random events may be identified as interesting 

candidates. GISTIC uses a statistical test to eliminate these. (3) Within a region that is frequently 

aberrant, multiple loci often share the same, maximal frequency of aberration—leading them all to be 

considered minimal common regions of amplification or deletion. GISTIC prioritizes those loci with the 

highest average amplitude of change. 

 

Supplementary Note 3: Comparative outlier analysis 

To identify genes responsible for the functional effects of 7gain, we applied a ‘comparative outlier 

analysis’ in which we identified genes on the chromosome that show extreme outliers among at least 

10% of the tumors among tumors with 7gain compared to 7normal (Table 3). Specifically, for each probeset 

‘PRBST’ matching a gene on chr7, primary GBMs were classified according to their copy-number 

status at the gene locus (defined as the mean of segmented values across the minimal set of SNP markers 

that contain the gene) as 7norm (if θdel < cij < θamp), 7gain (if θamp< cij < 0.9), or 7gainPRBSTamp (if cij > 0.9). 

All expression values were normalized by subtracting the median and scaling by the median absolute 

deviation of 7norm samples. The outlier score represents the top 10th percentile of these transformed 

expression values among the 7gain samples. 

 

The assumption behind this analysis is that broad aberrations, because they affect large numbers of 

genes, may have (1) polygenic effects, and (2) heterogeneous effects across tumors (sometimes affecting 

one set of genes and other times affecting a different set). Therefore, we did not look for genes that are 
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consistently upregulated in 7gain, but rather genes that are overexpressed in some samples with 7gain, 

compared to the distribution expected from 7norm.  

 

The results are striking. Although this outlier analysis was not restricted to potential oncogenes, the four 

top-scoring genes (out of 568 mapping to the chromosome; Table 3) are all likely candidates: MET (a 

known glioma oncogene) and its ligand HGF (see Main Text), PDAP1, an enhancer of the glioma 

oncogene PDGFRA (23), and HOXA9, an oncogene in acute myelogenous leukemia (24, 25). All of 

these candidates merit follow-up studies.
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Supplementary Table 1 Patient characteristics.

Overall 
(n=141)

Passed quality 
control (n=105) p value†

Anaplastic 
Astrocytoma 9 (6%) 7 (7%) 1
Anaplastic 
oligodendroglioma 7 (5%) 8 (8%) 0.43
Anaplastic mixed 
glioma 2 (1%) 2 (2%) 1
Low grade mixed 
oligoastrocytoma 1 (1%) 1 (1%) 1

Median survival* 538 552
(range) (37-5026) (63-5026)
Median age 52 50
(range) (20-82) (20-82)

* In days
† Calculated using Fisher’s exact statistic (histologies, gender) or t -test (age, survival)

Primary GBM 107 (76%) 75 (71%) 0.46

Secondary GBM 15 (11%) 12 (11%) 0.84

0.62

0.62

% male 64 62 0.89



Supplementary Table 2 Peak regions of amplification, deletion, and non-overlapping LOH

Amplification Cytoband*
Center of 
peak** q value Frequency†

# of genes in 
peak§

Center of 
peak** q value Frequency†

# of genes in 
peak§

1 both 7p11.2 54.7 1e-79 65% (26% focal) 1 54.7 1e-237 63% (31% focal) 1 EGFR
2 both 7q31.2 116.4 1e-24 73% (7% focal) 7 116.4 1e-49 66% (5% focal) 7 MET
3 focal 4q12 54.9 1e-14 18% 4 54.9 1e-13 11% 4 PDGFRA
4 focal 1q32.1 201.5 1e-7 15% 12 201.7 1e-18 15% 5 MDM4
5 focal 12q15 67.6 1e-5 7% 4 67.5 1e-16 7% 4 MDM2
6 broad 20q11.21 44.7 1e-3 22% 348 61.0 1e-9 24% 107
7 focal 12p13.32 4.1 1e-3 14% 21 4.2 1e-7 12% 13 CCND2
8 broad 12p12.1 27.2 0.01 11% 28 KRAS
9 focal 12q14.1 56.9 0.04 7% 33 56.3 1e-14 9% 32 CDK4
10 focal 3q26.33 180.8 0.04 16% 24 183.6 1e-3 12% 8 PIK3CA
11 broad 8q24.12 122.0 0.05 15% 1 129.2 1e-5 15% 2 MYC
12 broad 19p13.12 11.9 0.07 22% 548 15.3 1e-6 23% 253
13 focal 12q14.3 65.2 0.07 6% 1 66.1 1e-4 5% 1
14 broad 17q24.1 58.8 0.07 11% 100 56.1 0.01 10% 61
15 focal 6p21.1 43.1 0.13 7% 25
16 focal 2p24.3 16.2 0.23 11% 4 16.2 0.09 7% 2 MYCN
17 focal 12q15 68.8 1e-4 5% 1
18 focal 13q33.3 107.8 0.01 6% 5
19 focal 9p22.1 19.1 0.02 5% 9
20 broad 9q34.11 124.8 0.04 12% 184

Deletion
1 both 9p21.3 21.9 1e-100 69% (49% focal) 3 22.0 1e-242 61% (43% focal) 2 CDKN2A/B
2 both 10q23.31 89.4 1e-26 71% (7% focal) 2 89.5 1e-73 63% (7% focal) 1 PTEN
3 both 13q14.2 47.2 1e-13 47% (9% focal) 8 47.1 1e-25 39% (8% focal) 6 RB1
4 focal 1p36.31 5.2 1e-5 35% 11 7.8 1e-20 35% 8 CHD5
5 broad 22q13.31 44.4 1e-5 37% 120 45.3 1e-15 37% 21
6 broad 14q31.3 82.6 1e-5 36% 1 72.0 1e-14 32% 25
7 broad 19q13.41 55.2 1e-4 31% 151 55.3 1e-19 36% 204
8 broad 6q23.2 140.1 1e-4 30% 57 163.7 1e-7 22% 2
9 broad 16q21 58.2 0.02 23% 18 61.4 1e-3 16% 18
10 focal 4q34.3 183.9 0.22 17% 1 180.0 1e-3 18% 1
11 broad 11p15.4 6.0 0.24 24% 230 2.6 1e-5 23% 169
12 broad 15q13.3 31.0 1e-3 15% 1
13 focal 2q37.3 241.0 0.09 14% 68
14 focal 5q34 166.1 0.20 12% 1

Copy-neutral LOH
1 broad 17p13.2 4.3 1e-8 22% 202 5.7 1e-12 19% 97 TP53

* Based upon the original dataset of 141 gliomas, except for regions detected only in the combined dataset
** Mb coordinates using hg16 build.
§ Number of known or predicted RefSeq genes within peak.
† The frequency of focal events is reported against all samples. The frequency of 17p LOH is understated because a number of events 

were obscured by contaminating normal DNA.
‡ Although this locus remains in a significantly amplified region, the “peel-off” algorithm (Supplementary Methods) no longer identifies 

it as an independent event.

Broad or 
focal*

not significant

not significant

Merged with region 7‡

not significant

Combined dataset (319 gliomas)

not significant
not significant

not significant

Oncogene or tumor 
suppressor gene in 
region

Merged with region 5‡
not significant

Initial dataset (141 gliomas)



Supplementary Table 3 List of gene probes with highest outlier 
     scores in comparison of 7gain to 7norm among 528 genes 
     on chromosome 7

Rank Gene Probe Genes Outlier Score
1 217624_at PDAP1 52.8922
2 211599_x_at MET 43.6612
3 213816_s_at MET 36.1742
4 214651_s_at HOXA9 35.6697
5 210755_at HGF 31.5658
6 217599_s_at MDFIC 23.9145
7 210111_s_at KIAA0265 21.6106
8 207561_s_at ACCN3 20.4218
9 203291_at CNOT4 19.7519
10 207060_at EN2 18.868
11 202904_s_at LSM5 18.5608
12 215198_s_at CALD1 17.3731
13 200756_x_at CALU 17.0493
14 204148_s_at ZP3 and POMZP3 16.9143
15 213360_s_at POM121 and LOC340318 15.9566
16 220618_s_at ZCWPW1 15.9184
17 213807_x_at MET 15.7769
18 210997_at HGF 15.6395
19 219758_at FLJ12571 15.4237
20 203630_s_at COG5 15.365


