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Abstract 

Comprehensive knowledge of the genomic alterations that underlie cancer is a critical foundation 

for diagnostics, prognostics and targeted therapeutics.  Systematic efforts to analyze cancer genomes are 

underway, but the analysis is hampered by the lack of a statistical framework to distinguish meaningful 

events from random background aberrations. Here, we describe a systematic method called Genomic 

Identification of Significant Targets in Cancer (GISTIC) designed for analyzing chromosomal 

aberrations in cancer. We use it to study chromosomal aberrations in 141 gliomas and compare the 

results with two prior studies. Traditional methods highlight hundreds of altered regions with little 

concordance between studies. The new approach reveals a highly concordant picture involving ~35 

significant events, including 16-18 broad events near chromosome-arm size and 16-21 focal events. 

About half of these events correspond to known cancer-related genes, only some of which have been 

previously tied to glioma. We also show that superimposed broad and focal events may have different 

biological consequences. Specifically, gliomas with broad amplification of chromosome 7 have different 

properties than those with overlapping focal EGFR amplification: the broad events act in part through 

effects on MET and its ligand HGF and correlate with MET dependence in vitro. Our results support the 

feasibility and utility of systematic characterization of the cancer genome. 
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Introduction 

 Comprehensive knowledge of the mutational events responsible for cancer is a critical 

foundation for future diagnostics, prognostics and targeted therapeutics. Various efforts are now 

underway aimed at systematically obtaining this information. The first challenge in such a program is to 

study large collections of tumors to characterize the alterations that have occurred in their genomes. 

With recent advances in genomic technology, this is becoming increasingly feasible. For example, DNA 

arrays containing probes for hundreds of thousands of genetic loci have made it possible to detect 

regional amplifications and deletions with high resolution. Once the genomic alterations have been 

detected, the second challenge is to distinguish between ‘driver’ mutations that are functionally 

important changes (that is, that confer a biological property that allows the tumor to initiate, grow or 

persist) and ‘passenger’ mutations that represent random somatic events (that is, changes that occurred 

prior to a clonal expansion and are simply carried along despite conferring no selective advantage).  

The importance of this second challenge is evident from recent studies of chromosomal 

aberrations in cancer. Strikingly, different studies of the same tumor type often report ‘regions of 

interest’ that are highly discordant. For example, two recent studies of lung cancer, with similar sample 

sizes and analytic methods, reported 48 and 93 regions of interest, respectively (1, 2); the overlap 

between the lists was less than 5%. 

While perfect agreement should not be expected (in part due to differences in analytic methods), 

such high level of discordance is disconcerting. There are two potential explanations. One possibility is 

that the true number of cancer-related regions is extremely large, with each tumor containing only a 

small and variable subset of the alterations and each study detecting only a small subset of the regions. 

An alternative possibility is that many of the regions of interest reported in current studies are random 

events of no biologic significance, such as random passenger mutations. Current analysis methods do 
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not explicitly account for the background rate of random chromosomal aberrations. Similar issues arise 

in interpreting studies of point mutations in cancer resequencing projects (3-6). 

In this paper, we describe a statistical approach, called Genomic Identification of Significant 

Targets in Cancer (GISTIC), for identifying regions of aberration that are more likely to drive cancer 

pathogenesis. The method identifies those regions of the genome that are aberrant more often than 

would be expected by chance, with greater weight given to high-amplitude events (high-level copy-

number gains or homozygous deletions) that are less likely to represent random aberrations. 

We then apply GISTIC to a newly generated, high-resolution dataset of chromosomal aberrations 

in 141 gliomas. Glioma is an excellent model in which to test the approach because the functional roles 

of a substantial number of copy number alterations have already been validated in preclinical models (7, 

8). We find 32 statistically significant events of genomic amplification or loss. Using standard analytic 

methods, the regions of interest found in this study and those reported in two other recent studies of 

glioma are highly discordant. Strikingly, we find that the discordance largely vanishes when the GISTIC 

methodology is applied to the underlying data from all three studies. Moreover, the regions we find 

contain nearly all cancer genes previously known to be involved in glioma. 

The significant aberrations in the glioma genome fall into two types: focal and broad (near the 

size of a chromosome arm). By studying the biological properties of tumors, we find evidence that 

overlapping focal and broad events can have very different consequences. Focusing on chromosome 7 

(chr7), we show that focal high-level amplification at the EGFR gene is associated with activation of 

EGFR itself while broad lower-level amplification of the whole chromosome often activates the MET 

axis by increasing the dosage of both MET and its ligand HGF, suggesting that a subset of GBM patients 

with polysomy 7 might benefit from MET inhibition. 
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Results 

GISTIC methodology  

GISTIC identifies significant aberrations through two key steps (Fig. 1, SI Methods). First, the 

method calculates a statistic (G score) that involves both the frequency of occurrence and the amplitude 

of the aberration. Second, it assesses the statistical significance of each aberration by comparing the 

observed statistic to the results that would be expected by chance, using a permutation test that is based 

on the overall pattern of aberrations seen across the genome.  The method accounts for multiple 

hypothesis testing using the false-discovery rate (FDR) framework (9) and assigns a q-value to each 

result, reflecting the probability that the event is due to chance fluctuation. For each significant region, 

the method defines a ‘peak region’ with the greatest frequency and amplitude of aberration. Each peak is 

tested to determine whether the signal is due primarily to broad events, focal events, or overlapping 

events of both types. 

Application to glioma 

 We applied the method to a collection of 141 gliomas, including 107 primary glioblastomas 

(GBMs), 15 secondary GBMs, and 19 lower-grade gliomas (SI Table 1). We hybridized genomic DNA 

to microarrays containing probes for ~100,000 SNPs to identify copy-number changes and loss-of-

heterozygosity (LOH). A genome-wide view of the copy-number alterations is shown in Fig. 2a (LOH 

results are described in SI Note 1). The overall pattern is complex, with almost every region of the 

genome being altered in at least one tumor. Nonetheless only 16 broad and 16 focal events are 

significant. Focal events are superimposed on four broad events (including two focal events on 

chromosome 7 and single events on chromosomes 9, 10, and 13), resulting in a total of 28 peak regions 

of amplification, deletion, and LOH. 
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 The 16 broad events include 6 amplifications (chromosomes 7, 8q, 12p, 17q, 19p, and 20), 9 

deletions (6q, 9p, 10, 11p, 13, 14, 16q, 19q, and 22), and 1 region of copy-neutral LOH (17p) (Fig. 2b, 

SI Table 2; SI Note 1). These events occur at high frequency (range 10-70%, median 27%). In 

particular, amplification of chr7 and deletion of chr10 each affect over 60% of our samples including 

over 80% of our primary GBMs. For broad regions without superimposed focal events, the peak regions 

are large (median of 110 genes) (SI Table 2). 

The 16 focal events tend to occur at lower frequencies than the broad aberrations (range 6-49%, 

median 14%) (SI Table 2). Among these, amplifications of 4q12 and 7p11.2 (18-26% of samples) and 

deletions of 1p36.31 and 9p21.3 (35-49%) are the most frequent. In some cases, a high degree of 

amplification renders amplifications highly significant even though they occur in only 6-7% of samples 

(for example, the regions containing CDK4 and MDM2 on chr12). Because the background rate of 

deletions across the genome is higher, deletions usually must occur at higher frequencies than 

amplifications to attain similar levels of significance (SI Table 2). The peak regions for these focal 

events can be localized to small regions (median of 4 genes). 

Analysis confirms known genes, identifies new loci 

We compared the 28 peak regions to the locations of oncogenes and tumor-suppressor genes 

previously implicated in the pathogenesis of glioma. A recent review (10) lists 12 such genes reported to 

be altered in multiple studies of glioma (TP53, RB1, CDKN2A/B, PTEN, EGFR, PDGFRA, MET, CDK4, 

CDK6, MDM2, MDM4, MYC). We found that 11 of these 12 genes each correspond with one of the 28 

peak regions (with one of these, MYC, laying just beyond the boundaries defined by GISTIC; as 

described below, this slight discrepancy is resolved with additional data) (SI Table 2). The twelfth gene 

(CDK6) lies within the broad region of significant amplification on chr7, although it does not correspond 
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to a peak. Interestingly, TP53 is within the single peak region of LOH that is not reflected in a peak of 

copy-number change, suggesting that it is primarily inactivated through copy-neutral LOH (SI Note 1). 

An additional 5 peak regions contain genes that are known to play a role in other cancers (MYCN, 

PIK3CA, CCND2, KRAS, and CHD5) (11, 12). Our analysis suggests that chromosomal aberrations 

involving these genes are also relevant for glioma pathogenesis. These genes should therefore be 

carefully characterized in glioma. 

The remaining 12 regions (43% of the total) are not associated with known cancer-related genes. 

These events occur at substantial frequencies (6-37%), but nine are due to broad events and two others 

rarely reach high amplitude. The final region (12q14.3) undergoes high-level amplifications, but always 

in concert with amplifications of either of two neighboring regions containing CDK4 and MDM2 (data 

not shown), suggesting it may be due to structural features required to amplify these genes (as is the case 

in dedifferentiated liposarcoma (13, 14)). The fact that nearly half the regions (including regions 

affected by highly prevalent aberrations) are not yet associated with known cancer-related genes 

underscores the importance of systematic analysis of the cancer genome. 

Previous studies of copy-number alterations in glioma have shown distinct patterns for certain 

subtypes such as primary vs secondary GBMs (15) or astrocytic vs oligodendroglial tumors (16). To 

explore whether our combined analysis of these glioma subtypes prevented the detection of alterations 

specific to primary GBMs, we performed a separate analysis on only the 107 primary GBMs in out 

sample set. No additional statistically significant alterations were identified (SI Fig. 1) 

Consistency across independent datasets 

We then sought to compare our results with two previous studies of copy-number alterations in 

glioma (178 samples on 100K SNP arrays; 37 samples on a 16K CGH array) (15, 17). At first glance, 

there appear to be striking differences. The previous studies reported many more regions of interest (208 



 8

and 97) (Table 1), but the regions included fewer of the known glioma-associated genes and show low 

concordance with one another. The differences are attributable to the methodology used in these studies, 

in which minimal common regions of copy-number change are reported, without explicitly taking into 

account the degree of background noise (see SI Note 2). Applying a similar analysis to our own data 

identifies a similarly large number of regions (144) (see SI Note 2) but these include fewer known 

glioma-associated genes and show low concordance with the other studies. By contrast, applying 

GISTIC to the raw data from the other two studies identifies 24 and 26 significant regions each. 

Importantly, these regions agree closely with the 27 regions (excluding copy-neutral LOH of 17p, as it is 

not observed in the copy-number analyses) identified above (SI Fig. 2), and they include essentially the 

same glioma-associated genes. Moreover, these results are specific to glioma, as seen in a comparison to 

lung cancer (SI Fig. 3) (2). The strong concordance across three independent datasets and two different 

platforms supports the validity of both the GISTIC methodology and our results for glioma.  

Given the close agreement across these datasets, we combined our initial dataset with the data 

from the prior study performed on the same platform to obtain a pooled dataset with 319 glioma samples. 

This analysis identified 34 significant regions, including 27 of the 28 identified in the initial dataset (SI 

Table 2). For the additional regions, the prevalence of aberrations is similar in the initial and combined 

datasets (11.0% vs. 11.3%), but they now exceed the significance threshold due to the larger sample size. 

Increasing the sample size also leads to narrower regions, with the median number of genes decreasing 

from 12 to 5 per region. Inclusion of additional datasets may define these regions with even greater 

precision and facilitate identification of the gene targets. 

Overlapping broad and focal events may have different consequences  

Having identified various instances of overlapping broad and focal events, we explored whether 

they have distinct functional consequences, using chr7 as an example (SI Fig. 4). We first compared 
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copy-number profiles to gene expression among a group of 43 primary GBMs for which we had 

sufficient material for a combined analysis. EGFR was overexpressed in most GBMs with focal EGFR 

amplification (‘7gainEGFRamp’) but in none of the GBMs with broad amplification of chromosome 7 in 

the absence of focal EGFR amplification (‘7gain’) (Fig. 3a). We found three additional sources of 

evidence supporting the biologic distinction between these two classes of tumors. First, recognizing that 

EGFR-amplified tumors are known to carry a low rate of mutations in the TP53 gene (18), we 

sequenced TP53 and found these mutations more frequently associated with 7gain compared to 

7gainEGFRamp (two-sided Fisher’s exact p = 0.03). Second, we found that 7gain is less frequently 

associated with EGFR point mutations or expression of the EGFRvIII deletion mutant (determined for 

many of our tumors in a prior study (19)) (p = 0.001). Third, we found that 7gain but not 7gainEGFRamp 

occurs frequently in secondary GBMs (p = 0.16). These three findings are consistent with earlier 

observations regarding 7gainEGFRamp (20, 21), and further suggest that 7gain has distinct functional 

consequences. 

To explore the function of 7gain, we identified genes on the chromosome that show extreme 

outliers in expression in at least 10% of tumors with 7gain, compared to 7normal (SI Note 3). The notion 

behind this ‘comparative outlier analysis’ is that broad events such as 7gain may have heterogeneous 

effects across various tumors. We are interested in identifying genes that are strongly upregulated in 

even a subset of the samples. 

Strikingly, two of the top four genes in this analysis are those encoding the receptor MET and its 

ligand HGF (SI Table 3). Approximately one-third of 7gain events are associated with either MET or 

HGF overexpression (Fig. 3a), and tumors that overexpress one tend to overexpress both (p = 0.06) 

(data not shown). The overexpression of MET and HGF appears to be functionally relevant: we studied 

glioma cell lines with 7gain and increased expression of MET and HGF (Fig. 3b) and found 
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phosphorylation and activation of the MET receptor even under serum-starved conditions (Fig. 3c). 

These cell lines showed enhanced responsiveness to the MET kinase inhibitor SU11274 (22) (Fig. 3d) at 

drug concentrations that inhibit the MET signaling pathway (SI Fig. 5a-b). None of the GBM cell lines 

with 7gain showed constitutive activation of EGFR or were responsive to the EGFR kinase inhibitor 

erlotinib (SI Fig. 5c-d). Compared to the relatively rare (5-7%) focal amplification of the MET gene 

locus (SI Table 2), 7gain with overexpression of MET and HGF may provide a more common 

mechanism for cell autonomous activation of the MET signaling pathway in glioma. This finding may 

be relevant for the clinical deployment of inhibitors targeting this network in glioma and other cancers 

(23). 

 

Discussion 

The application of a statistical approach such as GISTIC to the panoply of chromosomal 

aberrations found in cancer identifies those recurrent changes that are concordant across datasets and 

less likely to represent random passenger events. Indeed, we have now successfully used this approach 

to identify biologically significant aberrations in lymphoma (24), melanoma (25), and lung cancer (26). 

Although it is likely that the majority of the events identified by GISTIC are drivers that recur due to the 

effects of positive selection during tumor evolution, some events may recur due to biases in the DNA 

repair machinery for which our model of background aberrations does not account. Likewise, some 

driver aberrations may occur at low frequency and therefore be missed. The design of future 

experiments should consider the number of tumors needed to power detection of such rare events.  

Ultimately, the utility of systematic efforts to characterize the cancer genome is an empirical 

question. There are at least two potential concerns: on one hand, that the vast majority of cancer-related 

genes are already known with little left to learn; on the other hand, that cancer is hopelessly complicated, 
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with a large number of cancer genes, each altered in a small fraction of tumors. The results here suggest 

a more favorable situation, at least for copy-number alterations. With appropriate statistical 

methodology, three studies reveal a concordant picture of the glioma genome. There appears to be a 

tractable number of recurrent events, in the range of 40. Larger tumor collections may identify some 

additional low-prevalence events, but it seems likely that the majority of significant recurrent copy-

number alterations at this scale have been found. About half are likely to involve known cancer-related 

genes, with some not having previously been established to be involved in glioma; all of these genes 

should be systematically characterized in glioma. The remaining events likely point to cancer-related 

genes and other functional elements that remain to be discovered; the identification of the genes 

associated with the broad events is particularly important and will likely require the application of 

orthogonal approaches, such as expression profiling, mutational analysis and RNA interference. Finally, 

copy-number aberrations are only one form of the genomic changes in glioma. Identification of other 

cancer-associated events, including mutations, rearrangements, and epigenetic alterations will require 

similar statistical approaches and large data sets, as presented here. 
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Methods 

Clinical samples and cell lines 

 Genomic DNA was extracted from fresh frozen tumors samples using DNeasy (Qiagen).  Non-

tumor tissue, including paired normal brain corresponding to ten gliomas, was used for germline control 

DNA. Collection and analysis of all clinical samples was approved by the UCLA Institutional Review 

Board. RNA and DNA were also obtained from the GBM cell lines 8-MG-BA, A172, DK-MG, GAMG, 

HS683, LN-18, SF-268, SF-295, SNB-75, T98G, and U251. Gastric and lung cancer cell lines MKN-45 

(high level MET amplified) and H3255 (L858R EGFR mutant) were included as positive controls in 

experiments with the MET kinase inhibitor SU11274 and the EGFR kinase inhibitor erlotinib, 

respectively. 

 

SNP Arrays 

Genomic DNA was applied according to manufacturer’s instructions to oligonucleotide arrays 

(Affymetrix) interrogating 116,204 SNP loci on all chromosomes except Y (www.affymetrix.com). 

Arrays were scanned using the GeneChip Scanner 3000 and genotyping was performed using 

Affymetrix Genotyping Tools Version 2.0. Probe-level signal intensities were normalized to a baseline 

array with median intensity using invariant set normalization (27). SNP-level signal intensities were 

obtained using a model-based (PM/MM) method (28). Further analytic steps are described in SI 

Methods. SNP, gene, and cytogenetic band locations are based on the hg16 (July 2003) genome build 

(http://genome.ucsc.edu). Data from SF-268, SF-295, SNB-75, and six gliomas (along with paired 

normals) were previously published (29, 30). 

 

Mutation detection 
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PTEN and TP53 were sequenced in 134 of the 141 samples undergoing SNP analysis as previously 

described (19). All exons were covered in over 70% of samples except exons 1, 8, and 9 in PTEN and 

exons 7 and 10 in TP53. EGFR point mutations and vIII expression were determined for 133 and 58 

samples respectively in a prior study (19). 

 

Expression arrays 

Expression data were obtained using Affymetrix U133A/B and plus 2 arrays from 43 primary GBMs 

undergoing SNP array analysis. CEL files from U133A and plus 2 arrays were preprocessed separately 

using RMA (31). Probesets common to both arrays were used after equalizing the mean and standard 

deviation of the U133A and plus 2 arrays. Expression data from GBM cell lines were generated by 

Affymetrix cartridge arrays, except SF-268, SF-295, and SNB-75, where available U133A data were 

used (http://wombat.gnf.org/index.html). 

 

EGFR and MET inhibition 

Cell proliferation assays 

Cell lines were maintained in RPMI containing 10% serum and 1% penicillin/streptomycin. Stock 

solutions of of erlotinib (10 mM; WuXi Pharmatech) and SU11274 (1mM; Calbiochem) were prepared 

in DMSO and maintained at -20C or 4C according to manufacturer’s instructions. Drugs were diluted in 

fresh medium prior to each experiment. Cells were cultured in the presence of drug or vehicle for 4 days 

and viability was determined using the WST assay (Roche) or trypan blue exclusion assay as previously 

described (32, 33). 
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Western blot analysis 

To examine basal MET and EGFR phosphorylation, cells were grown in serum-free DMEM with 1% L-

glutamine 200mM, and 1% Pen/Strep for 24 hours. Cells were harvested and lysed using cell lysis buffer 

(Cell Signaling Technology) with 1% protease and 1% phosphatase inhibitors (Calbiochem).  Total 

protein concentration was determined using Bio-Rad Protein Assay Standard I (Bio-Rad Laboratories).  

Equal protein amounts were resolved by SDS-PAGE and electro-transferred to nitrocellulose membrane 

blots (34). Blots were probed with antibodies against MET (25H2), P-MET (P-Tyr 1234/5), P-EGFR (P-

Tyr 1173) (Cell Signaling Technology), and EGFR (sc-03; Santa Cruz Biotechnology), and exposed to 

standard X-ray film after application of peroxidase-conjugated secondary antibodies (Jackson-Immuno 

Research Lab) and ECL western blotting detection reagents (GE Healthcare). 
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Figure Legends 

Figure 1. Overview of the GISTIC method. After identifying the locations and, in the case of copy-

number alterations, magnitudes (as log2 signal intensity ratios) of chromosomal aberrations in multiple 

tumors (left panel), GISTIC scores each genomic marker with a G score that is proportional to the total 

magnitude of aberrations at each location (middle panel, top). In addition, by permuting the locations in 

each tumor, GISTIC determines the frequency with which a given score would be attained if the events 

were due to chance and therefore randomly distributed (middle panel, bottom). A significance threshold 

(green line) is determined such that significant scores are unlikely to occur by chance alone. Alterations 

are deemed significant if they occur in regions that surpass this threshold (right panel). For more details, 

see SI Methods. 

 

Figure 2. Significant broad and focal copy-number alterations in the glioma genome. (a) 

Amplifications (red) and deletions (blue), determined by segmentation analysis of normalized signal 

intensities from 100K SNP arrays (see SI Methods), are displayed across the genome (chromosome 

positions, indicated along the y axis, are proportional to marker density) for 141 gliomas (x axis; 

diagnosis is displayed on top and gliomas with low purity are segregated to the right). Broad events near 

the size of a chromosome arm are the most prominent, including amplifications of chr7 and deletions of 

chr10 observed among more than 80% of GBMs. (b) GISTIC analysis of copy-number changes in 

glioma. The statistical significance of the aberrations identified in (a) are displayed as FDR q-values (9) 

to account for multiple hypothesis testing. Chromosome positions are indicated along the y axis with 

centromere positions indicated by dotted lines. Fifteen broad events (indicated by red bars for 

amplifications and blue bars for deletions) and sixteen focal events (indicated by dashes) surpass the 

significance threshold (green line). The locations of the peak regions and the known cancer-related 
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genes within those peaks are indicated to the right of each panel. Several broad regions, including chr7 

and chr10, contain superimposed focal events, leading to needle-shaped peaks superimposed on highly 

significant plateaus.  

 

Figure 3. Broad gains of chromosome 7 often activate the MET pathway but not EGFR. (a) 

Expression levels of EGFR, MET, and its ligand HGF (all located on chr7) in primary GBMs. These 

data are log2-transformed signal intensities from all concordant probesets for each gene from Affymetrix 

U133 arrays, centered and normalized according to the median and median absolute deviation of 

samples with 7norm. Samples with 7gainEGFRamp  but not 7gain overexpress EGFR (highlighted in red) 

relative to 7norm. Conversely, a subset of tumors with 7gain overexpress MET or its ligand HGF, even in 

the absence of focal amplification. (b) A subset of glioma cell lines with 7gain also overexpress MET and 

HGF (MET/HGF+ lines, highlighted in red). We characterized lines as having 7gain if SNP array analysis 

showed them to be amplified across most of chr7. Cell lines are classified as being MET dependent 

based either on the results shown in panel (d) or previously published results (asterisks) (35). (c) 

Consitutive phosphorylation of MET in MET/HGF+ lines. Immunoblots to the indicated epitopes were 

performed on whole-cell lysates prepared after 24-hour serum starvation. Decreased MET protein levels 

in activated lines are a result of HGF-induced degradation (36). MET-dependent gastric cancer cells 

(MKN-45) were included as positive controls (35). (d) Decreased viability of MET/HGF+ cell lines (red) 

compared to non- MET/HGF+ lines (black) when treated with the MET inhibitor SU11274. Viability 

was measured using Trypan blue exclusion after exposure to inhibitor at the indicated concentrations for 

96 hours. MKN-45 cells (blue) were included as positive controls.  
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Table 1 Comparison of results between copy-number analyses of the
     glioma genome

Dataset Platform
# of 

tumors
# of 

MCRs

# of glioma 
genes in 
MCRs*

# of 
peaks

# of glioma 
genes in 
peaks*

Initial 100K SNP 141 144 5 27 9

Kotliarov (17) 100K SNP 178 208 3 26 9
Maher (15) 16K aCGH 37 97 8 24 9

* Eleven glioma genes affected by copy-number aberrations are considered 
     “known”: PTEN, RB1, CDKN2A/B, EGFR, PDGFRA, MET, CDK4, CDK6,
     MDM2, MDM4, and MYC (10)
† Minimal common regions (MCR) analysis, as presented in cited publications.

MCR analysis† GISTIC analysis


